AQA

Surname

Other Names
Centre Number
Candidate Number
Candidate Signature
GCSE
BIOLOGY
Foundation Tier Paper 2F
8461/2F
Monday 11 June 2018
Morning
Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

3

INFORMATION

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

4

\section*{| 0 | 1 | FIGURE 1 shows a food chain in |
| :--- | :--- | :--- | a river.}

FIGURE 1

Algae $\longrightarrow \underset{\text { animals }}{\text { Invertebrate }} \longrightarrow \underset{\text { fish }}{\text { Small }} \longrightarrow \underset{\text { fish }}{\text { Large }}$

Scientific term

Apex predator
Primary consumer

Organism in the food chain

Algae

Invertebrate animals

Large fish

Small fish

[Turn over]

6

01 . 2 TABLE 1 shows the biomass of the organisms at each stage in the food chain.

TABLE 1

Organism	Biomass in arbitrary units
Algae	840
Invertebrate animals	200
Small fish	40
Large fish	10

Calculate the percentage of the biomass of the invertebrate animals that is transferred to the large fish. [2 marks] Use the equation:

 percentage =biomass of large fish biomass of invertebrate animals

Percentage =

[Turn over]

0 1. 3 A large amount of biomass is lost from the food chain.

Complete the sentences.
Choose answers from the list. [3 marks]
coordination
digestion
excretion
filtration
ingestion
respiration

When the small fish eat the invertebrate animals, not all of this material is broken down during .

Materials absorbed from the gut may enter the body cells of the small fish. These materials are broken down into carbon dioxide and water by \qquad
The carbon dioxide and other waste materials from the body cells are removed from the small fish by \qquad
[Turn over]

BLANK PAGE

11

| 0 | 1.4 | A disease kills many of the small |
| :--- | :--- | :--- | fish.

Why does the number of invertebrate animals increase? [1 mark]
[Turn over]

12
0.2 FIGURE 2 shows some changes that occur during the menstrual cycle.

FIGURE 2
Menstruation

0 2. 1 FIGURE 2 shows that the lining of the uterus thickens between days 7 and 27.

What is the purpose of thickening the lining of the uterus? [1 mark]

Tick ONE box.

To break down waste

[Turn over]

| 0 | 2 |
| :--- | :--- | thickening of the lining of the uterus? [1 mark]

Tick ONE box.
Auxin

Oestrogen

Testosterone

$\left.\begin{array}{|l|l|l}0 & 2 & 3\end{array}\right)$ On which day is fertilisation most likely to occur?

Use information from FIGURE 2, on page 12.
[1 mark]

15

Contraception can be used to lower the chance of pregnancy.

| 0 | 2 | 4 |
| :--- | :--- | :--- | method of contraception to how the method works. [3 marks]

Method of contraception

Contraceptive pill

Diaphragm
How the method works

Barrier to
prevent sperm reaching the egg

Contains hormones to stop eggs maturing

Kills sperm

Slows down
sperm
production

Spermicidal cream

16
TABLE 2 gives information about some different
methods of contraception.

$\stackrel{N}{N}$
TABLE 2

METHOD	NUMBER OF PREGNANCIES PER 100 WOMEN IN ONE YEAR	POSSIBLE SIDE EFFECTS
Diaphragm and spermicidal cream	8	Usually none, but can cause bladder infection in some women
Condom	2	None
Contraceptive pill	1	Mood swings, headaches, high blood pressure, blood clots, breast cancer

$|||||||||||||||||||||||||\mid$

17

18

| 0 | 3 | Fossils give evidence about |
| :--- | :--- | :--- | organisms that lived a long time ago.

| 0 | 3 | .1 |
| :--- | :--- | :--- | fossils of the earliest life forms.

Give ONE reason why. [1 mark]

FIGURE 3 is a photograph of a fossilised fish.

FIGURE 3

19
$0 \mid 3$. 2 Suggest how the fossil in FIGURE 3, on page 18, was formed. [2 marks]
\qquad
\qquad
\qquad

0 0.3.3 The species of fish shown in FIGURE 3 is now extinct.

Give TWO possible causes of extinction. [2 marks]
1
\qquad
\qquad
2
\qquad
[Turn over]

Modern fish species have evolved from fish that lived a long time ago.

Evolution is caused by mutation and natural selection.
$0 \mid 3.4$ What is a mutation? [1 mark]
Tick ONE box.

A change in a gene

Accidental damage to an organism

An organism with a new characteristic

The loss of a species

21

$0 \mid 3.5$ Describe the process of natural
selection. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Turn over]

22

In the mid-19th century, a scientist studied inheritance in pea plants.

The scientist's work was the beginning of our modern understanding of genetics.

04 . 1 What is the name of this scientist? [1 mark]

Tick ONE box.
Alfred Russel Wallace

Charles Darwin

Gregor Mendel

23

0.4.2 In the mid-20th century, other scientists identified the chemical substance that makes up genetic material.

What is the name of the chemical substance that makes up genetic material? [1 mark]

Tick ONE box.

Carbohydrate

DNA

Lipid

Protein
[Turn over]

24

$0 \mid 4$. 3 A gene often has two alleles.
One allele is dominant and the other allele is recessive.

When is a recessive allele expressed as a characteristic?
[1 mark]
Tick ONE box.

When the dominant allele is not present

When the recessive allele is inherited from the female parent

When the recessive allele is inherited from the male parent

When the recessive allele is present on only one of the chromosomes

25

BLANK PAGE

[Turn over]

26

A scientist investigated the inheritance of height in pea plants.

The scientist crossed tall pea plants with short pea plants.

FIGURE 4 shows the scientist's results.

FIGURE 4

27
In Questions 04.4 and 04.5, use the following symbols to represent alleles:
$\mathrm{T}=$ the dominant allele for tall. $t=$ the recessive allele for short.
0 |4. 4 In FIGURE 4, the genotype of plant 1 is TT.

Give the genotype of plant 2. [1 mark]
[Turn over]

28

$0 \mid 4$. 5 The scientist crossed plant 3 with plant 4.

Complete FIGURE 5 to show the offspring produced from this cross. [2 marks]

FIGURE 5

29
0.4 .6 Draw a circle around ONE of the homozygous offspring in FIGURE 5, on page 28.
[1 mark]
0.4 . 7 What is the ratio of tall plants : short plants in the offspring in FIGURE 5? [1 mark]

Ratio of tall plants : short plants $=$
[Turn over]

| 0 | 5 | A person with Type 1 diabetes |
| :--- | :--- | :--- | cannot make enough insulin.

05.1 Which organ makes insulin?
[1 mark]
Tick ONE box.

Adrenal gland

Pancreas

0	5	2
A person with Type 1 diabetes		

Complete the sentences.
Choose answers from the list on page 31. [2 marks]
DNAglycogenkidney
liver
protein
skin
Insulin acts on an organ called the
This organ then takes in excessglucose from the blood and changesthe glucose into
[Turn over]

0 5. 3 Insulin cannot be taken as a

 tablet. This is because insulin is a type of protein.What would happen to the insulin in the tablet if it reached the stomach? [1 mark]

Two people each drank the same volume of a glucose drink. Person A has Type 1 diabetes. Person B does NOT have diabetes.

FIGURE 6, on page 33, shows how the concentration of glucose in their blood changed.

FIGURE 6
Blood glucose concentration in $\mathrm{mmol} / \mathrm{dm}^{3}$

Glucose
consumed

34

05.4 How much higher was the HIGHEST concentration of glucose in the blood of person A than the HIGHEST concentration in person B ?

Use information from FIGURE 6 on page 33. [2 marks]

Answer =
mmol/dm ${ }^{3}$

35
05 . 5 Describe ONE other way that the results for person A were different from the results for person B.

Use information from FIGURE 6
on page 33. [1 mark]
\qquad
\qquad
\qquad
[Turn over]

Type 2 diabetes is another form of diabetes. Type 2 diabetes is common in obese people.

People with Type 2 diabetes make enough insulin, but still cannot control their blood glucose concentration. This is because the body cells are not sensitive to the insulin.

FIGURE 7, on page 37, shows information about abdominal fat and insulin sensitivity in body cells.

0	5.6
6	

Tick ONE box.
A negative correlation

No correlation

A positive correlation

37

FIGURE 7

Insulin sensitivity

 of body cells in arbitrary units
[Turn over]

38

BLANK PAGE

0 5. 7 A person is at risk of developing Type 2 diabetes.

Suggest TWO ways the person could lower the chance of developing Type 2 diabetes. [2 marks]

1

2
\qquad
[Turn over]

0	6

Selective weed killers kill broad-leaved weed plants, but do NOT kill narrow-leaved grass plants.

FIGURE 8 shows some weeds growing on a grassy lawn.

FIGURE 8

Weed

Grass

Some students investigated the effect of a selective weed killer on the weeds growing in a lawn. They used $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ quadrats.

The lawn was 20 metres long and 10 metres wide.

The method used is on page 41.

41

1. Divide the lawn into two halves, side A and side B.
2. Place 5 quadrats in different positions on side A.
3. Place 5 more quadrats in different positions on side B.
4. Count the number of weed plants in each quadrat.
5. Spray side A with weed killer solution.
6. Spray side B with the same volume of water.
7. Repeat steps 2-4 after 2 weeks.

| 0 | 6 | 1 |
| :--- | :--- | :--- | should have used to place each quadrat. [1 mark]

[Turn over]

42

BLANK PAGE

$0 \mid 6.2$ Give the reason for the method you suggested in Question 06.1. [1 mark]
0.6 . 3 Explain why the students used water on one side of the lawn instead of weed killer.
[2 marks]
[Turn over]

44
TABLE 3 shows the students' results.
TABLE 3

$0 \mid 6.4$ Calculate the mean value, x, in TABLE 3. [1 mark]

Mean value, $\mathrm{X}=$

45

06 . 5 Calculate the percentage decrease in the number of weeds on side A after 2 weeks.
[2 marks]
Use the following equation:
percentage decrease $=$
(mean at start - mean after 2 weeks)
mean at start
$\times 100$
\qquad
\qquad
\qquad
\qquad
\qquad

Percentage decrease $=$
[Turn over]

46

BLANK PAGE

066 . 6 One student thought the results were NOT valid.

Suggest ONE improvement the students could have made to the method to make the results more valid.

Give the reason for your answer. [2 marks]
Improvement

Reason

[Turn over]
9

48

| 0 | 7 | Mycoprotein is a protein-rich |
| :--- | :--- | :--- | food.

Mycoprotein is made from the fungus Fusarium.

FIGURE 9, on page 49, shows a fermenter used for growing Fusarium.

0 0. 7 . 1 Explain why the fermenter is sterilised before use.
[2 marks]
\qquad
\qquad
\qquad
\qquad

49

FIGURE 9

[Turn over]

50

0 0. 7 . 2 Cold water is pumped through the cooling coil at point X.

This maintains a constant temperature inside the fermenter.

Suggest the temperature at which Fusarium grows fastest.
[1 mark]
Tick ONE box.

$5^{\circ} \mathrm{C}$

0 . 7 . 3 Glucose and bubbles of air enter the fermenter.

The bubbles of air supply oxygen.

Explain why Fusarium needs glucose and oxygen. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

0 7. 7 . 4 The bubbles of air also move materials around the fermenter.

Suggest why it is useful for bubbles of air and materials to move around inside the fermenter. [2 marks]

\qquad
\qquad
\qquad

53

0.7. 5100 grams of chicken meat contains 22 grams of protein.

100 grams of mycoprotein contains 11 grams of protein.
A man ate $\mathbf{1 0 0}$ grams of chicken in one meal.

How many grams of mycoprotein would the man need to eat to get the same mass of protein as in $\mathbf{1 0 0}$ grams of chicken? [1 mark]
Tick ONE box.

$$
100 \text { grams }
$$

110 grams

200 grams

220 grams

54

| 0 | 8 | Some students investigated |
| :--- | :--- | :--- | phototropism in plant seedlings.

This is the method used.

1. Measure the lengths of the shoots of 20 seedlings.
2. Set up four groups of seedlings as follows:

- A - bottom of shoot covered in aluminium foil
- B - tip covered in aluminium foil
- C - tip removed
- D - no changes.

3. Put the seedlings in a cardboard box.
4. Use a lamp to shine a light into the box through a hole in one side.
5. After one day, re-measure the lengths of the shoots.

55

6. Make a drawing of the appearance of one seedling from each group.

FIGURE 10, below, shows the appearance of one seedling in each group at the start of the investigation.

FIGURE 10

[Turn over]

56

BLANK PAGE

0.8. 1 Which TWO conditions should the students have kept constant for each group of seedlings? [2 marks]

Tick TWO boxes.

The length of the roots

The number of seedlings in each group

The temperature

The thickness of the aluminium foil

The volume of water added to the soil
[Turn over]

58
$0 \mid 8.2$ What is the purpose of the aluminium foil? [1 mark]
Tick ONE box.
\square To hold the shoot straight

FIGURE 11, below and on page 59, shows the students' results.

FIGURE 11

A

B

C

D

59

	A	B	C	D
Mean length of shoot at start in mm	23	24	21	25
Mean length of shoot after 1 day in mm	28	30	23	30
Mean change in length of shoot in mm	5	6	2	5

0.8 . 3 Suggest how the students measured the lengths of the curved shoots of seedlings A and D at the end of the investigation. [2 marks]
\qquad
\qquad
[Turn over]

60
088.4 The students concluded that the TIP of the shoot is needed for the plant to respond to light.

Give evidence for this conclusion from FIGURE 11 on pages 58 and 59. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

61
0.8 . 5 A hormone stimulates growth in shoots.

Which distribution of the hormone would cause the results seen in shoot D ?
[1 mark]
Tick ONE box.

Key:
$\left.\begin{array}{l}x \\ x \\ x\end{array}\right]$

62

| 0 | 9 | Many human actions are |
| :--- | :--- | :--- | reflexes.

0 0. 1 Which TWO of the following are examples of reflex actions? [2 marks]

Tick TWO boxes.

Raising a hand to protect the eyes in bright light

Releasing saliva when food enters the mouth

Running away from danger

Withdrawing the hand
from a sharp object

63

FIGURE 12 shows how the size of the pupil of the human eye can change by reflex action.

FIGURE 12

0 9. 2 Name ONE stimulus that would cause the pupil to change in size from A to B, as shown in FIGURE 12. [1 mark]

0 9. 3 Structure Q causes the change in size of the pupil.

Name structure Q. [1 mark]
[Turn over]

64

BLANK PAGE

65
0 9. 4 Describe how structure Q causes the change in the size of the pupil from A to B. [1 mark]
[Turn over]

66
0 9. 5 FIGURE 13 shows some structures involved in the coordination of a reflex action.

FIGURE 13

Describe how the structures shown in FIGURE 13 help to coordinate a reflex action.
[6 marks]
\qquad
\qquad
\qquad
\qquad

67
[Turn over]
. $\xlongequal{(1)}$
air temperature
.
ca
FIGURE 14 shows changes in global air
temperature and changes in the concentration of
carbon dioxide in the atmosphere.
-
π
ন FVNomoñNす
FIGURE

$$
\begin{aligned}
& \text { Change in } \\
& \text { global air } \\
& \text { temperature } \\
& \text { since } 1955 \\
& \text { in }{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concentration } \\
& \text { of carbon } \\
& \text { dioxide in the } 8 \\
& \text { atmosphere } \\
& \text { in ppm }
\end{aligned}
$$

constant
decreasing
increasing

71
TABLE 4

[Turn over]

72

Many scientists think that an increase in carbon dioxide concentration in the atmosphere causes an increase in air temperature.

10.2 How would an increase in the concentration of carbon dioxide in the atmosphere cause an increase in air temperature? [1 mark]
\qquad
\qquad

73

10. 0.3 Evaluate evidence for and against the theory that an increase in the concentration of carbon dioxide in the atmosphere causes an increase in air temperature.

Use data from FIGURE 14, on page 69, and your own knowledge. [4 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

74
||l|l|l||l|

75

[Turn over]

76

In each year, the concentration of carbon dioxide in the atmosphere is higher in the winter than in the summer.

| 1 | 0. | 4 |
| :--- | :--- | :--- | could cause the higher concentration of carbon dioxide in the winter. [1 mark]

| 1 | 0 | .5 |
| :--- | :--- | :--- | that could cause the lower concentration of carbon dioxide in the summer.

[1 mark]
\qquad
\qquad

77

| 1 | 0.6 |
| :--- | :--- | :--- | Give TWO possible effects of an increase in global air temperature on living organisms. [2 marks] 1

2
\qquad

1) 1 It is important to maintain water balance in the body.

FIGURE 15, on pages 78 and 79, shows how much water a person gained and lost by different methods in one day.
[Turn over]

78

FIGURE 15
Water gained by the body
Volume

KEY
F = Food $D=$ Drink $M=$ Metabolism

Water lost from the body
Volume in cm^{3}
1600
1500
1400
1300
1200
1100 1000 900 800 700 600 500 400 300 200 100

0
$\underset{\text { Method }}{ }$
KEY U = Urine F = Faeces
S = Skin B = Breathing
[Turn over]

80

BLANK PAGE

81

When water is balanced, the volume of water taken in by the body is equal to the volume of water lost from the body.
1.1. 1 Calculate the volume of water the person lost in one day in faeces.

Use information from FIGURE 15 on pages 78 and 79. [2 marks]
\qquad
\qquad

Volume lost in faeces =
cm^{3}
[Turn over]

82
1|1. 2 FIGURE 15, on pages 78 and 79, shows that one method of gaining water is by metabolism.

Which metabolic process produces water? [1 mark]

Tick ONE box.

Breakdown of protein to amino acids

Changing glycogen into glucose

Digestion of fat

Respiration of glucose

83
The next day, the person ran a 10-kilometre race.

The volume of water lost from the body through the skin and by breathing increased.

1	1.	3
Explain why more water was		

[Turn over]

11 . 4 Explain why more water was lost by breathing during the race. [3 marks]

END OF QUESTIONS

85

There are no questions printed on this page

86

There are no questions printed on this page

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

IB/M/Jun18/CD/8461/2F/E4

