## AQA

Please write clearly in block capitals.


Surname
Forename(s) $\qquad$
Candidate signature
I declare this is my own work.

## GCSE

 STATISTICS

## Higher Tier Paper 2

## Tuesday 16 June 2020

## Materials

For this paper you must have:

- a calculator
- mathematical instruments.


## Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross out any work you do not want to be marked.


## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper and graph paper. These must be tagged securely to this answer booklet.

Morning


Time allowed: 1 hour 45 minutes

| For Examiner's Use |  |
| :---: | :---: |
| Question | Mark |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| 12 |  |
| TOTAL |  |

## Answer all questions in the spaces provided.

1 Vanessa measures the height and mass of 12 children.
Circle the name given to the type of data she has collected.
bivariate qualitative discrete categorical

2 A set of 16 data values, $x$, has,

$$
\sum(x-\bar{x})^{2}=36
$$

Circle the standard deviation of the data.
Use,

$$
\text { standard deviation }=\sqrt{\frac{1}{N} \sum(x-\bar{x})^{2}}
$$

3 The tree diagram shows some probabilities relating to events $A$ and $B$.


3 (a) Circle the probability of $B$ given $A$.
0.32
0.4
0.42
0.5

3 (b) Circle the probability of $B$ and not $A$.
0.9
0.7
0.14
0.06
[1 mark]

## Turn over for the next question

4 The diagram shows the map of a town.
The modal age of buildings in each region of the town is shown.


4 (a) Circle the modal age of the buildings in region $F$ of this town.

$$
0-19 \text { years } \quad 20-39 \text { years } \quad 40-59 \text { years } \quad 60+\text { years }
$$

4 (b) The oldest building in the town was built in 1847.
Ahmed says that this building is in region J .
Is Ahmed correct?
Tick ( $\checkmark$ ) a box.


Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$

4 (c) The diagram below shows the modal age of buildings in a neighbouring village.


Compare the age of buildings in the village with the age of buildings in the town.
$\qquad$
$\qquad$

Turn over for the next question

5 A town council is considering reducing the opening hours of the local library.
Grace and Alex want to find out how people living in the town feel about this.

5 (a) Grace decides to ask people as they leave a supermarket in the town at different times one week.

She collects data from,
30 males and 30 females aged 40 years and under
30 males and 30 females aged 41 years and over.
5 (a) (i) What is the name given to this type of sampling?

Answer $\qquad$

5 (a) (ii) Give two different reasons why her sample may be unreliable.
[2 marks]
Reason 1 $\qquad$
$\qquad$

Reason 2 $\qquad$
$\qquad$

| The town has 8000 houses. |
| :--- | :--- |
| Alex decides to obtain a sample of 120 of these houses using random sampling. |
| (b) Explain how Alex can use a list of random numbers to select his sample. |
|  |

5 (c) Alex plans to interview one person face-to-face from each house he samples.
5 (c) (i) Write down one problem that he could have when he tries to carry out the interviews.
[1 mark]
$\qquad$
$\qquad$

5 (c) (ii) Write down one way that he could overcome the problem you wrote down in part (c)(i).
[1 mark]
$\qquad$
$\qquad$

## Turn over for the next question

6 The tables show the mean number of portions of fruit and vegetables eaten per day by children and adults of different ages and gender in England.

Children

|  | Age (years) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{5 - 7}$ | $\mathbf{8 - 1 0}$ | $\mathbf{1 1 - 1 3}$ | $\mathbf{1 4 - 1 5}$ | All ages |
| Females | 3.3 | 3.2 | 3.5 | 3.2 | $\mathbf{3 . 3}$ |
| Males | 3.3 | 3.5 | 3.1 | 2.9 | $\mathbf{3 . 2}$ |
| All children | 3.3 | 3.4 | 3.3 | 3.0 | $\mathbf{3 . 2}$ |

Adults

|  | Age (years) |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1 6 - 2 4}$ | $\mathbf{2 5 - 3 4}$ | $\mathbf{3 5 - 4 4}$ | $\mathbf{4 5 - 5 4}$ | $\mathbf{5 5 - 6 4}$ | $\mathbf{6 5 - 7 4}$ | $\mathbf{7 5 +}$ | All <br> ages |  |
| Females | 3.2 | 3.8 | 3.7 | 3.7 | 3.8 | 3.9 | 3.4 | $\mathbf{3 . 7}$ |  |
| Males | 2.6 | 3.4 | 3.6 | 3.4 | 3.5 | 3.9 | 3.6 | $\mathbf{3 . 4}$ |  |
| All adults | 2.9 | 3.6 | 3.7 | 3.6 | 3.7 | 3.9 | 3.5 | $\mathbf{3 . 5}$ |  |

Source: Adapted from Health Survey for England, 2015

6 (a) (i) Compare the amount of fruit and vegetables eaten by males aged 14-15 with the amount eaten by females of the same age.
[1 mark]
$\qquad$
$\qquad$

6 (a) (ii) Write two comparisons of the amount of fruit and vegetables eaten by different ages of adults.
[2 marks]
Comparison 1 $\qquad$
$\qquad$

Comparison 2 $\qquad$
$\qquad$

Natalie wants to investigate how many portions of fruit and vegetables students in her year group at school eat.

The table shows the number of students of each gender in her year group.

| Gender | Number |
| :--- | :---: |
| Males | 99 |
| Females | 121 |

Natalie decides to interview a sample of 40 students.
She decides to stratify by gender.

6 (b) Explain why it is sensible for Natalie to stratify by gender.
$\qquad$
$\qquad$

6 (c) Show that Natalie should select 18 male students from her year group.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

6 (d) Natalie's friend suggests she should interview students in her year group eating school dinners.

Explain why this could give biased results.
$\qquad$
$\qquad$
$\qquad$

## Question 6 continues on the next page

Natalie decides to select 18 male students and 22 female students at random from her year group.

She asks each student,
"How many portions of fruit and vegetables did you eat yesterday?"
The bar line graph shows the number of portions of fruit and vegetables eaten by the 40 students in her sample.


It is recommended that everyone should eat at least 5 portions of fruit and vegetables every day.

6 (e) Calculate an estimate of the percentage of students in Natalie's year group that ate at least 5 portions.
[2 marks]
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Answer $\qquad$ \%

Students in Natalie's year are aged 14-15 years.

6 (f) Compare the number of portions of fruit and vegetables eaten by students in Natalie's year with the corresponding figure for England.

You should,

- use the information from the bar line graph on page 10 and the information from the table on page 8
- calculate an appropriate average.
[5 marks]
$\qquad$

6 (g) Suggest two things that Natalie could have done to make her comparison more reliable.

Suggestion 1 $\qquad$
$\qquad$
$\qquad$

Suggestion 2 $\qquad$
$\qquad$
$\qquad$

7 A small pottery factory has two designers, Lucy and William. The factory makes three types of pottery: vases, jugs and teapots.

The table shows some information about the number of items of pottery made in 2018 by each designer.

|  | Vases | Jugs | Teapots | Total |
| :--- | :---: | :---: | :---: | :---: |
| Lucy | 325 | 115 | 40 | $\mathbf{4 8 0}$ |
| William | 250 | 145 | 95 | $\mathbf{4 9 0}$ |
|  |  |  |  |  |

7 (a) Use the information in the table to complete the Venn diagram for these items.
$\xi=970$ items of pottery made by Lucy and William
$\mathrm{L}=$ Number of items of pottery made by Lucy
$\mathrm{V}=$ Number of vases made

$\qquad$
$\qquad$
$\qquad$
$\qquad$

7 (b) The pie chart represents the items of pottery made by William in 2019.

William made 312 Vases in 2019.
Did William make more teapots in 2019 than in 2018?
You must show your working.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Turn over for the next question



8 The line graphs show the life expectancy at birth of males and females in the UK and in Brazil.


Source: data.worldbank.org

Compare life expectancy in the UK and Brazil.
Your answer should include,

- a comparison of life expectancy in the UK and Brazil
- differences between life expectancy of males and females
- a comparison of the trends in life expectancy over time.
$\qquad$


## Turn over for the next question

9 The table shows some of the index numbers for the average prices of houses in different countries of the UK in 2015, 2016 and 2017.

The base year is 2015 .
The table also shows the weightings.

| Country | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | Weighting |
| :--- | :---: | :---: | :---: | :---: |
| England | 100 | 100.4 | 105.7 | 84 |
| Wales | 100 | 101.7 | 105.2 | 4 |
| Scotland | 100 | 101.6 | 100.6 | 10 |
| Northern Ireland | 100 | 99.3 | 103.4 | 2 |

Source: adapted from ONS
9 (a) Explain why the weighting for England is greater than the weightings for the other countries of the UK.
[1 mark]
$\qquad$
$\qquad$

9 (b) The average price of a house in Wales in 2016 was $£ 177000$
Calculate the average price of a house in Wales in 2017.
$\qquad$
$\qquad$
$\qquad$

Answer £ $\qquad$

9 (c) Calculate a weighted index number for the price of houses in the whole of the UK in 2017, using 2015 as the base year.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Answer $\qquad$

9 (d) The table below shows the average price of a house in London in 2015 and 2017.

| 2015 | $£ 499000$ |
| :--- | :--- |
| 2017 | $£ 543000$ |

A newspaper claims that the average price of a house in London has increased by a greater percentage between 2015 and 2017 than houses in the UK as a whole.

Comment on the newspaper's claim.
You must show your working.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Turn over for the next question

10 Plaque is a sticky substance that forms on teeth.
Tim is a dentist.
Tim wants to find out whether the amount of plaque on teeth is affected by the length of time a person cleans their teeth.

He plans an experiment.
Tim cleans the teeth of 10 of his patients by removing all their plaque.
He asks these 10 patients to record the length of time they spend cleaning their teeth each day for two months.
At the end of the two months, he calculates a plaque score for each patient's teeth using a 0 to 3 continuous scale.


10 (a) Write down the response variable.

Answer $\qquad$

10 (b) Tim gives each patient a diary to complete so that they can record when and for how long they clean their teeth.

Why might this be a good idea?
$\qquad$
$\qquad$
$\qquad$

10 (c) He draws this scatter diagram to show the data he collects and adds a line of best fit.


Write down two different problems with Tim's line of best fit.

Problem 1 $\qquad$
$\qquad$

Problem 2 $\qquad$
$\qquad$

Question 10 continues on the next page

10 (d) Ellie, another dentist, does the same experiment with some of her patients.
She draws a line of best fit on her scatter diagram.
The equation of her line is $y=2.7-0.43 x \quad$ where,
$y$ is plaque score
$x$ is average time spent brushing per day (minutes)

10 (d) (i) Ellie suggests that her patients should brush their teeth twice a day for an average of 2 minutes each time.

Estimate the plaque score for a patient who follows Ellie's advice.
[2 marks]
$\qquad$
$\qquad$

Answer $\qquad$

10 (d) (ii) Ellie collects her data from 12 patients.
She ranks her data and finds that $\sum d^{2}=520$
Calculate the value of Spearman's rank correlation coefficient.
Use $r_{\mathrm{s}}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}$
$\qquad$
$\qquad$

Answer $\qquad$

10 (e) Tim collects plaque data for some different patients.
He also asks them to record the average time they spend showering each day.
The Spearman's rank correlation coefficient for his data is -0.76
He concludes,
"People can reduce their plaque score by spending more time in the shower every day."

Is Tim's conclusion valid?
Tick ( $\checkmark$ ) a box.

Give a reason for your answer.

$\qquad$

## Turn over for the next question

11 (a) In this question you will need to use,

$$
\text { flu vaccination rate }=\frac{\text { number receiving vaccine }}{\text { number offered vaccine }} \times 1000
$$

The table gives some information about the number of children receiving the flu vaccine in two NHS areas one winter.

| NHS area | Number of children <br> offered vaccine | Number of children <br> receiving vaccine | Flu vaccination <br> rate |
| :--- | :---: | :---: | :---: |
| Greater Manchester | 188500 | 113100 |  |
| South East |  | 171800 |  |

[Source: Public Health England]
The flu vaccination rates in Greater Manchester and the South East are equal.
Complete the table.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

All young children are offered the MMR (measles, mumps and rubella) vaccine. 91\% of young children in England receive the vaccine.

11 (b) A child minder in England cares for 4 young children.
11 (b) (i) Write down one assumption that must be made if the number of these children who receive the MMR vaccine follows a Binomial distribution with probability 0.91
$\qquad$
$\qquad$
$\qquad$

11 (b) (ii) Assuming this Binomial distribution is appropriate, calculate the probability that at least 3 of these 4 children receive the MMR vaccine.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Answer $\qquad$

## Question 11 continues on the next page

11 (c) Lara randomly selects 250 young children attending nursery schools in a city. 230 of these children receive the MMR vaccine.

Lara says,
"Children in this city are more likely to receive the MMR vaccine than children in the whole of England."

Explain why Lara may not be correct.
You must show your working.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

12 A trout is a type of fish.
Gemma wants to estimate the number of trout living in a lake.
She captures 138 trout from the lake.
She marks these trout and then releases them back into the lake.
The following week she captures a second sample of 95 trout.
She finds that 23 trout from her second sample are marked.

12 (a) (i) Calculate an estimate of the number of trout in the lake.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Answer $\qquad$

12 (a) (ii) Why does Gemma wait one week before she takes her second sample?
$\qquad$
$\qquad$

## Question 12 continues on the next page

12 (b) Gemma measured the length of the 138 trout she captured in her first sample. The table gives information about the length of these trout.

| Length, $\boldsymbol{x}$ (cm) | Frequency |
| :---: | :---: |
| $0<x \leqslant 20$ | 18 |
| $20<x \leqslant 30$ | 30 |
| $30<x \leqslant 40$ | 38 |
| $40<x \leqslant 60$ | 30 |
| $60<x \leqslant 80$ | 14 |
| $80<x \leqslant 120$ | 8 |

12 (b) (i) Gemma wants to show her information as a histogram. She draws this diagram.


What mistake has Gemma made in drawing her histogram?
[1 mark]
$\qquad$
$\qquad$

12 (b) (ii) Draw a correct histogram to show Gemma's information.
$\qquad$
$\qquad$
$\qquad$
$\qquad$


12 (b) (iii) What type of skewness is shown in the histogram you drew in part (b)(ii)?




| Question number | Additional page, if required. <br> Write the question numbers in the left-hand margin. |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

