GCSE
STATISTICS
8382/2H
Higher Tier Paper 2

Mark scheme

June 2019
Version 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Statistics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	n Answer	Mark	Comments	
1	3.75	B1		
2	C	B1		
3	80	B1		
4	Test A	B1		
5(a)	2013	B1	accept twenty thirteen or two thousand and thirteen	
5(b)	4 remaining values correctly plotted	B1		
	Their plots joined by straight lines	B1dep	dependent on at least one correct plot do not accept any part of graph being curved	
	'Year(s)' label on horizontal axis	B1		
	'Attendances (at all A\&E hospitals) in millions' label on vertical axis	B1	oe eg (number of) people in millions 'millions' must not be omitted	
	Additional Guidance			
	First B1: Plotting to tolerance of half a small square			
	Second B1 : Mark intention, so, (for example), forgive small areas of double lines			
	Second B1: At least one correct plot includes if some or all of the others are omitted			
	Fourth B1 : Accept \# for 'number of' eg '\# patients - millions' is B1			
	Fourth B1 : Accept 'mil' or (1) 000000 (s) for millions but do not accept 'per million'			
	Fourth B1 : 'frequency of patients in millions'			B1
	Fourth B1 : 'frequency in millions'			B0
	Ignore graph before 2008 and after 2016			
	Ignore any titles to the graph written			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

5(d)	There could be more doctors / nurses / hospitals or The hospital could be more efficient or Quicker treatment may be available or It will vary between hospitals / patients / emergencies / time of day / time of week (so they won't all have longer waiting times)	B1	oe	
	Additional Guidance			
	Ignore irrelevant statements alongside correct ones			
	Answers which only reference their answer to a comparison between Major hospitals and All A\&E hospitals score zero			
	Hospitals may not have reached capacity			B1
	It will depend upon how serious the problem is			B1
	Some people are now not going to A\&E for minor conditions			B0
	They could build more A\&E hospitals			B0
	Dan hasn't collected any data / there are no data about waiting times			B0

6(a)	North West and South East and no other regions mentioned	B1	in either order accept NW and SE
	Additional Guidance		
	Ignore any numbers given as part of the answer		

Question	Answer	Mark	Comments

6(b)	Two correct reasons eg Discusses that bars give misleading impression eg The fastest speed has the shortest bar eg Discusses that diagram is not to scale eg The bars are not drawn to scale eg The speeds are quite similar to each other but the bar lengths are quite different eg There is no scale	B2	oe B1 one correct reaso	
	Additional Guidance			
	Accept higher for faster and lower for slower			
	There are two bars for each region / row			B1
	The bars with the numbers on are the same length			B1
	The bars are drawn as arrows			B1
	The difference in length between the first two bars is the same as between the second two bars, but there is not the same difference in speed			B1
	It is not clear how long each bar is			B1
	Length of arrows don't match the speed			B1
	Doesn't show units			B1
	The bars are the wrong way around			B0
	Some speeds are the same but the bar lengths are different (not true)			B0
	There should be axes			B0
	The length of the bar does not correspond to the ranking (it shouldn't it should be proportional to the value)			B0
	The heading says 'How fast are you?' but the data is for regions / shoppers			B0
	The values go in descending order whereas it should be in ascending order			B0

Question	Answer	Mark	Comments

6(c)(i)	Correct diagram, with ordered leaves and numbers vertically aligned										B3	B2 three or four correct, ordered rows or all numbers correctly placed in rows but not ordered	
	0	7	7	9									
	1	0	2	3	4	6	7	8	8	9			
	2	1	2	2	4	5	5	6	7			B1 correct numbers in at least two rows (not necessarily ordered) but does not score B2	
	3	1	2	2	4								
	4	1											
	Additional Guidance												
	Condone lack of vertical alignment for B2 and B1												
	Marks can be scored for work in white space below question if grid blank or crossed out												

Question	Answer	Mark	Comments

6(c)(iii)	The shopping centre is busier in December	B1	oe it is the run-up to	
	Additional Guidance			
	People are Christmas shopping			B1
	References to weather can only be to state or imply underfoot conditions eg More difficult to walk in poor weather in December			B1
	It might be icy / snow / be slippery in December			B1
	You wear less in June so you will be faster			B0
	People have more time in December			B0

7(a)

Question	Answer	Mark	Comments

	$0.35 \times$ their 0.6 or 0.21 or 0.35×0.4 or 0.14 or their $0.65 \times$ their 0.6 or 0.39 or their $0.65 \times$ their 0.4 or 0.26	M1	oe
7(b)	```(0.35 \times their 0.6) + (0.35 \times 0.4) + (their 0.65 > their 0.6) or their 0.21 + their 0.14 + their 0.39 or 0.35 + their 0.39 or 1- their 0.26```	M1dep	oe
	0.74	A1ft	oe eg $\frac{74}{100}$ or $\frac{37}{50}$ or ft if M2 awarded
	Additional Guidance		
	Accept equivalent fractions, decimals or percentages throughout		
	Work seen in part (a) may be credited in (b) if appropriate		
	'Their' probabilities must be [0, 1] or [0, 100]\% to allow follow through from (a)		

Question	Answer	Mark	Comments

8(a)	Toby's table covers all possible responses / is exhaustive	B1	oe eg Maxine's data table does not allow for less than 4 g of fat	
	Toby's intervals do not overlap / are mutually exclusive	B1	oe eg with Maxine's data table, it is not clear in which interval 8 g belongs	
	Additional Guidance			
	Both marks can be earned by a single statement eg Toby's intervals do not overlap and cover all possible responses			B2
	Toby's starts at 0, Maxine's starts at 4 (taken to imply exhaustive)			B1
	Maxine's starts at 4 or Toby's start at 0 (one of these but not both)			B0
	Toby's uses (double) inequalities which are better			B0
	Toby's are easier to understand			B0
	Toby's go higher			B0
	Toby's are more accurate			B0
	Toby's have a greater range			B0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| 8 | 0.7×60 or 42 or 0.7×61 or 42.7 | M1 | oe
 may be implied by a mark by 42 (or 42.7)
 on the vertical axis or by an attempt at a
 line across at 42 (or 42.7) |
| :--- | :--- | :--- | :--- | :--- |
| | Correct $70^{\text {th }}$ percentile for their cumulative
 frequency graph | A1ft | their graph must be increasing with an
 attempt to join the points |
| | Additional Guidance | | |
| | Answer with no apparent working - check their (appropriate) graph to see if it is
 correct for M1A1ft | | |

8(b)(iii)	Alternative Method 1: Use of (b)(ii)		
	Yes because the $70^{\text {th }}$ percentile is now less than 25	B1ft	ft their answer to (b)(ii) oe, eg Yes because now 30% of meals contain more than 23 grams of fat
	Alternative Method 2: Use of their graph		
	Yes, because now only 20% of meals contain more than 25 grams of fat	B1ft	read from graph and convert to a percentage ft from their graph (must be increasing) oe
	Alternative Method 3: Use of the data table		
	Yes, because now 80% of meals contain less than 25 grams of fat	B1	oe
	Alternative Method 4 : Calculating number of meals		
	Yes and 30% of $60=18$ (5 years ago) and $60-48=12 \text { (now) }$	B1	
	Additional Guidance		
	Accept use of inequalities, eg 20\% < 30\% and Yes		B1

Question	Answer	Mark	Comments

9(a)	(Extraneous / explanatory / independent) variables / conditions can be controlled (more easily) or The experiment is easier to replicate or More likely / easier to demonstrate a cause and effect	B1	oe eg easier for demonstrate independent variable	to sponse
	Additional Guidance			
	More complex / reliable equipment can be used			B1
	It is done in a controlled environment			B1
	They are more reliable / valid			B1
	Fewer (condone less) random factors			B1
	More convenient as you don't have to move from site to site			B1
	It's in a closed environment			B0
	Response / dependent variables can be controlled			B0
	It is done in a laboratory			B0
	Quicker / easier / cheaper / more convenient / less biased / accurate			B0

9(b)(i)	To see the difference in the performance with and without coffee / to compare to the others	B1	oe without a control group, Steve would not know whether a change in scores was due to the coffee
	Additional Guidance	B1	
	To account for extraneous variables	To have something to compare to / with	B1
	To see if there is a change / improvement in the results	B0	
	So that Steve knows whether his hypothesis is true	B0	
	To ensure the results are accurate / not biased / fair	B0	

Question	Answer	Mark	Comments

9(b)(ii)	No and a correct reason, eg, The improvement in the coffee drinkers' scores is less than that of the control group	B1	oe	
	Additional Guidance			
	Must state or imply 'No' or say 'Steve's wrong' (oe)			
	Allow 'did better' or 'got better marks' (oe) for 'increased by more'			
	Allow 'those who drink nothing' (oe) for the control group			
	No, the control group did better			B1
	The control group did better			B0
	No, they all got similar scores			B0
	Yes, though the non-coffee drinkers went up as well			B0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

11(a)	12	B 1	

11(b)	D	B1	

12(a)	His population should only be passengers staying in standard class cabins	B1		
	Additional Guidance			
	He should only ask people in standard class			B
	Some are in standard, some aren't			B

12(b)	Alternative Method 1 : using Ran\# (or just noting corrections)			
	Assign every passenger in the population a number from (00) 1 to 460	B1	oe	
	Generate random numbers from a calculator by typing Ran\# $\times 460$ or Ran\#(460)	B1	oe if they choose to multiply by a value greater than 460 they must also reference ignoring numbers above 460	
	Round (up) the answer and ignore repeats	B1	oe allow truncate for 'round'	
	Alternative Method 2 : standard method			
	Assign every passenger in the population a number from (00) 1 to 460	B1	oe	
	(Use the Ran\# button to) generate random numbers from a calculator (and take the first 3 digits after the decimal point)	B1	oe allow RANINT\#	
	Ignore any numbers greater than 460 and repeats	B1	oe if RANINT used, may not need to ignore numbers greater than 460	
	Additional Guidance			
	If student consistently uses 900 instead of 460 (thinking they are sampling from all 900), mark as per scheme with 900 replacing 460 but withhold one mark			
	An acceptable alternative numbering might be (00)0 to 459			

Question	Answer	Mark	Comments

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{12(c)} \& \begin{tabular}{l}
Two separate questions and a better balance in the number of positive and negative responses for each of the questions eg \\
How would you rate:- \\
the value for money of standard class cabins? \\
Very poor Poor Good Very good the quality of standard class cabins? \\
Very poor Poor Good Very good or \\
Do you think standard class cabins give value for money?
\[
\text { Yes } \square \quad \text { No }
\] \\
Do you think standard class cabins are good quality? \\
Yes \(\square \quad\) No \\
or \\
Standard class cabins provide good value for money \\
Disagree Neither agree nor disagree Agree \\
Standard class cabins are good quality \\
Disagree Neither agree nor disagree Agree
\end{tabular} \& B2 \& \begin{tabular}{l}
oe \\
there could be an even of tick boxes \\
B1 two separate questio or \\
a better balance in the positive and negative re single question or all th questions or without a
\end{tabular} \& \begin{tabular}{l}
odd number \\
mber of onses in their unacceptable stion
\end{tabular} \\
\hline \& \multicolumn{4}{|c|}{Additional Guidance} \\
\hline \& \begin{tabular}{l}
Allow a scale like, for example,
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)

\square

very very poor
\end{tabular} \& \& \& at least B1

\hline \& \multicolumn{3}{|l|}{Throughout, ignore any boxes marked 'don't know' or 'would rather not say' (oe) eg poor \square average \square good \square don't know} \& at least B1

\hline \& \multicolumn{3}{|l|}{| How do rate your cabin for value for money? |
| :--- |
| 5 star 4 star 3 star 2 star 1 star (0 star) (acceptable as 'better balance') |} \& at least B1

\hline \& \multicolumn{3}{|l|}{Allow reference to scales such as ' $0-10$ ' as a 'better balance' with a minimum of 0 and 10 defined as a negative and positive respectively} \&

\hline
\end{tabular}

Question	Answer	Mark	Comments

13(a)	$0.2 \times 85 \text { or } 17$ or 0.35×54 or 18.9 or 0.45×70 or 31.5	M1	oe accept $20 \times 85 \text { or } 35 \times 54$	45×70
	$0.2 \times 85+0.35 \times 54+0.45 \times 70$	M1dep	oe accept $20 \times 85+35 \times 54$	5×70
	67.4	A1	allow 67 with working digits 674(0) scores	
	Additional Guidance			
	Allow 0.85 for 85 etc for M2			
	67 without working			MOMOAO

Question	Answer	Mark	Comments

13(b)	0.2×40 or 8 or 0.35×32 or 11.2 or 19.2	M1	oe accept 20×40 or 35×32
	$0.2 \times 40+0.35 \times 32+0.45 \times n$ where n is either a letter or a number between $90 \frac{2}{3}$ and 100 inclusive or 60 - their $19.2(=40.8(\div 0.45))$ or their $8+$ their $11.2+45$	M1dep	oe accept eg $20 \times 40+35 \times 32+45 \times 100$
	Yes with correct working, eg a correct evaluation of $0.2 \times 40+0.35 \times 32+0.45 \times n$ for $90 \frac{2}{3} \leqslant n \leqslant 100$ or [90.6, 90.67](%25) or 91(\%) or 64(.2) or Yes, with correct explanation eg 45% still available, 40.8% needed to pass	A1	oe correct working implied by 64(.2) yes can be ticked or implied
	Additional Guidance		
	Ignore further work carried out on 64(.2)		
	'No' ticked is a maximum of M2 scored		

Question	Answer	Mark	Comments

14(a)(i)	$149.76 \div 24(=6.24)$	B1	oe eg $\frac{149.76}{24}$
	Additional Guidance		
	Accept $6.24 \times 24=149.76$	B1	

14(a)(ii)	$\sqrt{\frac{968.72}{24}-\left(\frac{149.76}{24}\right)^{2}}$ or $\sqrt{\frac{968.72}{24}-6.24^{2}}$	M1	accept without the square root oe eg$\sqrt{40.363 \ldots-38.9376}$	
	1.19 or better	A1	must see to at least 2 decimal places	
	Additional Guidance			
	$\sqrt{\frac{968.72}{24}-\left(\frac{149.76}{24}\right)^{2}}=1.2$			M1A0
	Use of 6.2 instead of 6.24 scores M1A0 if substitution correct unless recovered			
	Condone missing brackets if recovered			
	Missing brackets not recovered			MOAO
	Condone square roots poorly placed, eg only covering numerator, unless definitely wrong as revealed by calculation done			

Question	Answer	Mark	Comments

14(a)(iii)	Target not met / unlikely to have been met and either a reason which references mean and standard deviation, eg Her mean is greater than 6 but some of her distances are likely to have been less than 6 km because her standard deviation is 1.2 or A calculation which shows a correct value below 6 using mean and standard deviation eg 6.24-1.2 = 5.04	B2	oe B1 for target not met been met with incomp eg some of her distance less than 6 km decision that the targ met can be implied	ason have ot be
	Additional Guidance			
	Do not accept target partially met / met sometimes / almost met met with mean but not met with standard deviation / other contradictions			$\begin{aligned} & \text { B0 } \\ & \text { B0 } \end{aligned}$
	Allow 'may not be true' for 'unlikely to have been met' (oe)			
	Do not allow 'may not be exactly true' as this infers 'partially met'			B0
	The standard deviation shows that some days she walked below 6 km			B0
	The standard deviation shows that some days she walked below 6 km therefore she didn't meet her target			B1
	(The standard deviation shows that some days she walked below 6 km as) $6.24-1.2=5.04$ therefore she didn't meet her target			B2
	Allow use of [1,4] standard deviations in these calculations			

Question	Answer	Mark	Comments

14(b)	(Erika's mean is greater than Tomasz's so) Erika walks further on average (than Tomasz)	B1	oe Erika generally walks further than Tomasz	
	(Tomasz has a greater standard deviation so) the distance walked by Tomasz is more variable (than Erika)	B1	oe the amount Erika walks every day is more consistent	
	Additional Guidance			
	Answers should include an interpretation of the mean / standard deviation in context and cannot simply just re-use the words mean and / or standard deviation only			
	The distances walked by Tomasz range more			B1
	The distances that Erika walks vary less / are less spread out			B1
	Erika walks more similar distances each day			B1
	Erika walks similar distances each day (not comparative to Tomasz)			B0
	Tomasz's range / variance is bigger (not accepted as an interpretation)			B0
	Erika's mean is greater (no context or interpretation of mean)			B0
	Erika walks further			B0
	The mean distance that Erika walks is greater (no interpretation of mean)			B0

| 15(a) | Drinking tea and drinking coffee are not
 exhaustive events | B1oe eg
 some people (eg children) are likely to
 drink neither tea or coffee.
 some people may drink a different drink
 or a cold drink |
| :---: | :--- | :--- | :--- |
| | Additional Guidance | |

Question	Answer	Mark	Comments

15(b)	$0.18^{1} \times 0.82^{4}$ or $0.08(138 \ldots)$	M1	oe	
	$5 \times$ their $0.08(138 \ldots)$ or ${ }^{5} C_{1} \times$ their $0.08(138 \ldots)$	M1dep	oe ${ }^{5} C_{1} \times 0.18^{1} \times 0.82^{4}$ is M 2	
	[0.4069, 0.407] or 0.41	A1	oe fraction, decimal or percentage$\text { SC2 } 0.0043$	
	Additional Guidance			
	Accept fractions or decimals in working			
	Some students are doing more work on 0.41 , eg $\frac{0.41}{5}$			M2A0

15(c)	The choices of the three family members may not be independent or Children may be less likely to drink tea	B1	oe	
	Additional Guidance			
	People in families might drink the same thing at breakfast			B1
	They might share a big pot of tea			B1
	The probability of liking tea is not constant			B1
	They may all drink tea			B1
	Parents may tell children what to drink			B1
	Kids don't like tea / There may be children			B1
	None or all of the people may be tea drinkers			B1
	The sample is not random			B1
	There are three outcomes and the binomial should have two			B0

Question	Answer	Mark	Comments

	It would not be practical for Luca to collect the data himself or Luca would need to contact every university	B1	oe it would take too long to collect the data himself

Additional Guidance
16(a)

It would be expensive	B1
People (with low grades) may lie	B1
The data has already been collected	B1
May not be able to find everyone / every result	B1
People may not remember	B0

16(b)	They would allow him to compare the proportions of students receiving each degree or They would allow him to compare the number of degrees awarded	B1	oe	
	Additional Guidance			
	They will allow him to compare the data for the two years			B1
	The two populations are different sizes			B1
	See differences / changes / increases / decreases (between sets of data)			B1
	Gives the correct proportions by using the different radii			B1
	Easy to understand			B0
	They are representative of the population			B0

Question	Answer	Mark	Comments

16(c)	$\sqrt{\frac{376355}{308395}} \text { or } 1.1(047 \ldots .) \text { or } \sqrt{10.98 \ldots}$	M1	oe	
	3.3(1...)	A1	seen, or implied by correct radius of pie chart if no working	
	$($ First $=) \frac{88890}{376355} \times 360$ or $85(.0)$ or (Upper second $=$) $\frac{186570}{376355} \times 360$ or $178(.4 \ldots$.$) or 178.5$ or 179 or (Lower second $=) \frac{81595}{376355} \times 360$ or $78(.0 \ldots)$ or (Third or Pass =) $\frac{19300}{376355} \times 360$ or $18(.4 \ldots$) or 18.5 or 19	M1		
	All four angles correct	A1	may be implied by correct pie chart if no working	
	Pie chart drawn with - radius $=3.3 \mathrm{~cm}$ - correct angles - sectors labelled	B2	award B1 for a pie chart satisfying two of the three conditions angle values do not need to be shown	
	Additional Guidance			
	Tolerance on drawing is 2 degrees each sector and 1 mm on radius Tolerance on 178.4 is [176, 180] Tolerance on 18.4 is [16, 20]			
	If a circle is drawn free-hand, it is B0, but the other 4 marks may be scored			
	If working is not shown and angles are calculated incorrectly, to judge whether the labelling is appropriate, assume that the largest sector is Upper Second, the next largest is First, the next is Lower Second and the smallest is Third or Pass			
	No working, but pie chart drawn with correct radius, correct angles and correct labelling			6 marks

Question	Answer	Mark	Comments

16(d)	$\frac{48}{360} \times 308395$ or $41119(.3 \ldots)$	M1	oe
	88890 - their 41 119(.3) or $47770.6(6 \ldots)$ or 47770.67 or 47770.7	M1dep	oe
	47770 or 47771	A1	allow 47800 or 48000 if no wrong working seen $\text { SC2 } 47742$
	Additional Guidance		

16(e)	A suitable reason eg Teaching may have improved or Students may be working harder	B1	oe	
	Additional Guidance			
	The subjects / exams students are taking may have changed			B1
	Students are more intelligent			B1
	Students in 2008 performed badly / Students in 2016 performed well			B1
	There are more students so more will get First Class (doesn't mean it is easier)			B0
	Hasn't taken into account other / all the Universities			B0

Question	Answer	Mark	Comments

16(f)	$\frac{83720}{347470}$ or $0.24(094 \ldots$) or $24(.094 \ldots) \%$ or $\frac{5170}{28885}$ or $0.178(9 \ldots$.$) or 17.8(9 \ldots) \%$ or 0.18 or 18%	M1	oe	
	$\frac{83720}{347470}$ or $0.24(094 \ldots$.$) or 24(.094 \ldots) \%$ and $\frac{5170}{28885}$ or $0.178(9 \ldots)$ or $17.8(9 \ldots) \%$ or $0.179(0)$ or $17.9(0) \%$ or 0.18 or 18%	M1dep	oe	
	$0.24(094 \ldots$.) and $0.178(9 \ldots$. (or $0.179(0)$ or 0.18) and a suitable conclusion eg Students studying full-time are more likely to achieve a first class degree (than students studying part-time) There's a greater proportion / percentage of full-time students achieving a first class degree	A1	oe allow equivalent per allow equivalent frac with a common deno do not accept 'there students getting a fir	ages. if expressed ator more full-time ass degree...'
	Additional Guidance			
	Condone the incorrect concept of "doing" a first class degree in conclusions eg full-time students are more likely to do a first class degree is acceptable as the conclusion			

