## General Certificate of Secondary Education

January 2011

## Mathematics



Module N4 Paper 2
(With calculator)
Higher Tier
[GMN42]
TUESDAY 11 JANUARY
$10.30 \mathrm{am}-11.30 \mathrm{am}$

## TIME

1 hour.

## INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper.
Answer all twelve questions.
Any working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.

## INFORMATION FOR CANDIDATES

The total mark for this paper is 44 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
You should have a calculator, ruler, compasses, set-square and protractor.
||| ||||||||||||||||||||| |||
The Formula Sheet is on page 2.

| For Examiner's <br> use only |  |
| :---: | :---: |
| Question <br> Number | Marks |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| 12 |  |
| Total <br> Marks |  |

## Formula Sheet

Area of trapezium $=\frac{1}{2}(a+b) h$


Volume of prism $=$ area of cross section $\times$ length


## In any triangle $A B C$

Area of triangle $=\frac{1}{2} a b \sin C$
Sine rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$


Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$


Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$


## Quadratic equation:

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

1 A flagpole is held vertically by a wire fixed to a point 9.5 m above the horizontal ground, and to a point on the ground 5.4 m from the foot of the pole.

Calculate the angle that the wire makes with the ground.

Answer $\qquad$ ${ }^{\circ}$ [3]

2 (a) Factorise fully $21 x y-7 y^{2}$

Answer $\qquad$ [2]
(b) Express $\frac{1}{4 v}+\frac{2}{3 v}$ as a single fraction in its simplest form.

Answer $\qquad$ [3]


A solid glass paperweight in the shape of a hemisphere is shown above.
Calculate the volume of the paperweight.

Answer

4 Every time a ball is dropped it rises to a height which is $\frac{3}{4}$ of the height it dropped from.

A ball is dropped from a height of 4 metres and is allowed to bounce repeatedly.

What is the least number of bounces until its rebound height is less than 2 metres?

Show your working.

Answer $\qquad$ bounces [2]

5 A straight line with gradient 2 passes through the points $(-2,-1)$ and $(1, b)$.
(a) Using the axes below, or otherwise, find the value of $b$.


Answer $b=$ $\qquad$ [1]
(b) Find the equation of this line.

Answer $\qquad$ [2]

6 Two spheres have volumes in the ratio 27:125
(a) The radius of the larger sphere is 22.5 cm . Calculate the radius of the smaller sphere.

Answer $\qquad$ cm [3]
(b) Show that the surface area of the smaller sphere is exactly $36 \%$ that of the larger sphere.

8 School reports for students sometimes show the student's mark and the average mark for the year group.

Which of the three measures of "average" do you think they should use?
Give a reason for your answer.
Answer $\qquad$ because $\qquad$
$\qquad$
$\qquad$

9 Evaluate

$$
\sqrt[5]{\frac{9.3^{2}}{6.2+\sqrt{59.7}}}
$$

Answer

10 (a) A factory has 300 workers of whom 250 are women. 80 women earn less than $£ 300$ per week. 50 women earn between $£ 300$ and $£ 400$ per week. The rest of the women earn more than $£ 400$ per week.

Describe clearly how you would take a stratified sample of 60 women.
(b) To test job satisfaction, it is decided to interview the first 30 to arrive at work. Explain why this may not give a $10 \%$ random sample.
$\qquad$
$\qquad$


Diagram not drawn accurately

In a quadrilateral $W X Y Z, W X=6 \mathrm{~cm}, X Y=7 \mathrm{~cm}$ and $\mathrm{WZ}=12 \mathrm{~cm}$.
Angle $\mathrm{WXY}=120^{\circ}$ and angle $\mathrm{WYZ}=70^{\circ}$

Calculate angle WZY.
$\qquad$

12 A wire of length 24 cm is cut into two pieces, each of which is bent into the form of a square.
(a) If the length of the side of one square is $x$ centimetres, show that the length of the side of the other square is $(6-x)$ centimetres.
(b) The total area of the two squares is $18.5 \mathrm{~cm}^{2}$

Find the lengths of the two pieces of wire.

Answer $\qquad$ cm, $\qquad$ cm [5] will be happy to rectify any omissions of acknowledgement in future if notified.

