

General Certificate of Secondary Education 2014–2015

Double Award Science: Physics

Unit P1

Higher Tier

[GSD32]

THURSDAY 26 FEBRUARY 2015, MORNING

MARK SCHEME

Introduction

Mark schemes are published to assist teachers and students in their preparation for examinations. Through the mark schemes teachers and students will be able to see what examiners are looking for in response to questions and exactly where the marks have been awarded. The publishing of the mark schemes may help to show that examiners are not concerned about finding out what a student does not know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes

Examination papers are set and revised by teams of examiners and revisers appointed by the Council. The teams of examiners and revisers include experienced teachers who are familiar with the level and standards expected of students in schools and colleges.

The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to review the questions and mark schemes commenting on a large range of issues about which they must be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues of differentiation and positive achievement can be addressed right from the start. Mark schemes, therefore, are regarded as part of an integral process which begins with the setting of questions and ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all the markers are following exactly the same instructions and making the same judgements in so far as this is possible. Before marking begins a standardising meeting is held where all the markers are briefed using the mark scheme and samples of the students' work in the form of scripts. Consideration is also given at this stage to any comments on the operational papers received from teachers and their organisations. During this meeting, and up to and including the end of the marking, there is provision for amendments to be made to the mark scheme. What is published represents this final form of the mark scheme.

It is important to recognise that in some cases there may well be other correct responses which are equally acceptable to those published: the mark scheme can only cover those responses which emerged in the examination. There may also be instances where certain judgements may have to be left to the experience of the examiner, for example, where there is no absolute correct response – all teachers will be familiar with making such judgements.

1	(a)	Measure volume of milk with graduated cylinder [1] Measure mass of grad. cylinder [1] Measure mass of grad. cylinder plus milk [1] With top-pan balance [1] Subtract to find mass of milk [1] Use Density = mass/volume [1]	[6]
	R	esponse	Mark
	sp	andidates mention at least 5 of the above points. They use good pelling, punctuation and grammar. The form and style are of a gh standard and specialist terms are used appropriately.	[5]–[6]
	sa ar	andidates explain at least 3 of the above points. They use atisfactory spelling, punctuation and grammar. The form and style e of a satisfactory standard and they have made use of some becialist terms.	[3]–[4]
	sp	andidates explain 1 of the above points. They use limited pelling, punctuation and grammar. The form and style are of a nited standard and they have made no use of specialist terms.	[1]–[2]

Response not worthy of credit.

2

(a)	R	elative electrical charge	Location in the atom
		0	(In the) nucleus
		-1	Outside the nucleus/in shells/orbiting
	[1] e	each	
(b)	(i)	6	
	(ii)	6	
	(iii)	8	
(c)	(i)	Beta or β	
	(ii)	Gamma or γ	
	(iii)	Gamma or γ	

[2]

[4]

[1]

[1]

[1]

[1]

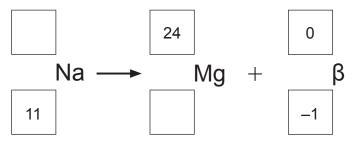
[1]

[1]

10

8

[0]


AVAILABLE MARKS

3	(a)	Suitable scale > half of axis [1] labelled "Length/m" [1]	[2]	AVAILABLE MARKS
	(b)	5 or 6 points correctly plotted [2], 4 points correct [1]	[2]	
	(c)	Line of best fit, consistent with plots of candidate	[1]	
	(d)	(0.8, 4.5), independent of plots	[1]	
	(e)	k = gradient or equivalent [1] = 6/1 or similar [1] = 6 [1] ohm/m [1]	[4]	10
4	(a)	momentum = mass × vel [1] or p = mv or equivalent = 1200 × 12 [1] = 14 400 [1] kgm/s [1] or Ns	[4]	
	(b)	a = gradient or a = $\frac{v - u}{t}$ [1] or a = $\frac{v}{t}$ a = $\frac{12}{8}$ [1]		
		= 1.5 (m/s ²) [1] F = ma [1] = 1200 × 1.5 [1] = 1800 (N) [1]	[6]	10
5	(a)	(i) C	[1]	
		(ii) A and B show accelerations only or horizontal line shows const. velocity [dep. marking]	[1]	
	(b)	$a = \frac{v - u}{t}$ [1] or equivalent		
		$4 = \frac{30 - u}{5} \text{ or } 20 = 30 - u [1]$		
		<i>u</i> = 10 (m/s) [1]	[3]	5

6	Two light nuclei [1] fused together [1]
	to form a heavier nucleus [1]
	release of energy [1] or heat
	difficulties: high temp or containment [1]
	occurs naturally in stars or sun [1] Any 5 points

Response	Mark
Candidates mention at least 5 of the above points. They use good spelling, punctuation and grammar. The form and style are of a high standard and specialist terms are used appropriately.	[5]–[6]
Candidates explain at least 3 of the above points. They use satisfactory spelling, punctuation and grammar. The form and style are of a satisfactory standard and they have made use of some specialist terms.	[3]–[4]
Candidates explain 1 of the above points. They use limited spelling, punctuation and grammar. The form and style are of a limited standard and they have made no use of specialist terms.	[1]–[2]
Response not worthy of credit.	[0]

7 (a) Write the appropriate numbers in the boxes below.

[1] mark each, marked independently

- (b) $1.6 \times 10^{6} \rightarrow 0.8 \times 10^{6} \rightarrow 0.4 \times 10^{6} \rightarrow 0.2 \times 10^{6}$ 1 halving [1] 2 halvings [1] Correct answer = 2 × 10⁵ [1]
- 8 (i) Downward arrow vertically (by eye) originating on trapdoor [1] starting at centre [1]
 - (ii) (Hook) 3 for one mark. [1]
 Distance (to hinge) is smallest or least or shortest or equivalent [1]
 [dep. marking]
 - (iii) CM = ACM or $F_1d_1 = F_2d_2$ [1] F × 40 = 8 × 25 [1] and [1] F = 5 (N) [1]

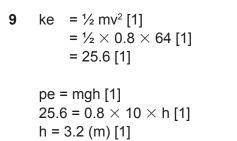
AVAILABLE MARKS

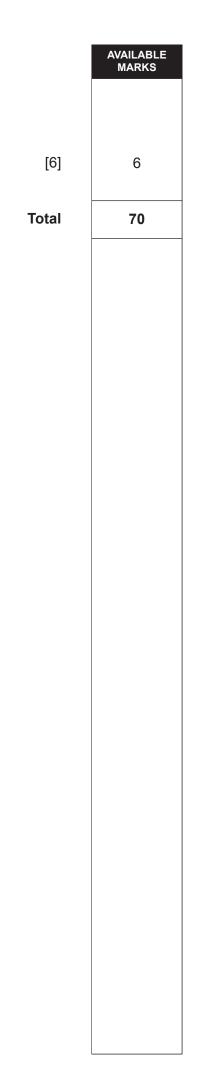
[6]

[4]

[3]

[2]


[2]


[4]

6

7

8

