Rewarding Learning

Candidate Number
\square

Double Award Science:

 Chemistry
Unit C1

Higher Tier
[GSD22]
GSD22

THURSDAY 14 MAY 2015, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in blue or black ink only. Do not write with a gel pen.
Answer all nine questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Quality of written communication will be assessed in Question 5(a).
A Data Leaflet, which includes a Periodic Table of the elements is provided.

1 Five particles are listed below:
Na^{+}
H_{2}
$\mathrm{HCO}_{3}{ }^{-}$
Ne
$\mathrm{H}_{2} \mathrm{O}$

Write down, from the list of particles above, an example of:
(a) an atom \qquad
(b) a cation \qquad
(c) a compound \qquad
(d) a molecular ion \qquad

BLANK PAGE DO NOT WRITE ON THIS PAGE (Questions continue overleaf)

2 A pupil investigated the reaction between calcium carbonate (marble chips) and dilute hydrochloric acid. He used excess calcium carbonate.

The equation for this reaction is:

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The student measured the mass of the flask and its contents every minute for 8 minutes. The results are shown in the table below.

Mass/g	102.8	101.4	100.3	99.5	99.3	99.2	99.1	99.0	99.0
Time/min	0	1	2	3	4	5	6	7	8

(a) What is the name of the salt produced during the reaction?
\qquad
(b) What caused the mass of the flask and contents to decrease?
(c) Suggest why the student used excess calcium carbonate.
\qquad
\qquad
(d) Give an accurate way of checking that the resulting solution was neutral.
\qquad
(e) Another student in the same class used calcium oxide instead of calcium carbonate. He observed no drop in mass. Explain why this would be the case.
\qquad

3 The following table shows the solubilities of three gases in water, at different temperatures:

Gas	solubility (mg per 100 g water) ${ }^{*}$ at:			
	$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
carbon dioxide	348	169	97	76
nitrogen	2.9	1.9	1.5	1.2
oxygen	7.0	4.3	3.0	2.7

* $\mathrm{mg}=$ milligrams
(a) What is the solubility of carbon dioxide at $20^{\circ} \mathrm{C}$?
\qquad $\mathrm{mg} / 100 \mathrm{~g}$ water.
(b) Which gas is least soluble at $50^{\circ} \mathrm{C}$?
\qquad
(c) How does the solubility of the three gases change as the temperature increases?
\qquad
(d) Use the table to help you explain why fish may die if the water in a river becomes too warm.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE DO NOT WRITE ON THIS PAGE (Questions continue overleaf)

4 The diagram below shows the apparatus used to pass an electric current through molten lead bromide.

(a) What name is given to the process which happens in the crucible?
\qquad
(b) What is the electrolyte in this experiment?
\qquad
(c) Give two reasons why graphite is a suitable material for making the electrodes.

1. \qquad
2.

(d) Complete the table below by predicting the products and observations at the electrodes for the molten salts given.

name of substance	observations at anode	observations at cathode	product at anode	product at cathode
lead bromide	beads of metal	bromine	lead	
lithium chloride	bubbles of greenish/ yellow gas	beads of metal		lithium
potassium iodide	bubbles/purple vapour			

(e) Write a half equation for the reaction which happens at the anode when an electric current is passed through molten lithium chloride.
\qquad

5 (a) Describe in words the structure of an atom of carbon with an atomic number of 6 and a mass number of 14 .

Your answer should include the number and position of all the different particles in this carbon atom.

You will be assessed on your written communication skills including the use of specialist science terms.
\qquad
(b) Carbon also has atoms with a mass number of 12.

What name is given to atoms with the same atomic number but different mass numbers?
\qquad
(c) When carbon atoms join together to form molecules they share electrons.

What name is given to this type of bonding?
\qquad

6 Magnesium reacts with sulfur to form the compound magnesium sulfide.
(a) Complete the diagrams below to show the arrangement of all the electrons in a magnesium atom and a sulfur atom.

magnesium atom

sulfur atom
(b) (i) In the space below draw the electronic arrangements for the ions formed when magnesium and sulfur bond together.
Your answer should include the charges on the ions.

magnesium ion

sulfide ion
(ii) What is the chemical formula for magnesium sulfide?
\qquad

7 (a) What type of bonding is typical of non-metallic elements and compounds?
\qquad
(b) Draw dot and cross diagrams to show the outer electrons only in a molecule of water.
(c) Oxygen is a diatomic molecule which has a double bond.

Draw a diagram to show all the electrons in a molecule of oxygen.
Label:
(i) the double bond
(ii) a lone pair
(d) What is meant by the term diatomic?

8 When the elements sodium and potassium react with water very similar chemical reactions take place. However there are some noticeable differences.
(a) Give three ways in which the reactions of sodium and potassium with water are similar.

1. \qquad
2. \qquad
3.

(b) Explain fully, in terms of their electron arrangements, why sodium and potassium react in such similar ways.
\qquad
\qquad
\qquad
(c) Give two ways in which the reactions of sodium and potassium with water are different.

1. \qquad
2.

(d) Complete and balance the symbol equation for the reaction of potassium with water.

$$
\mathrm{K}+\mathrm{H}_{2} \mathrm{O} \longrightarrow
$$

(e) When sodium reacts with bromine it forms the compound sodium bromide. Write a balanced symbol equation for this reaction.
\qquad

9 The table below gives some information about five substances $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E}.

Substance	Boiling point ${ }^{\circ} \mathbf{C}$	Melting point ${ }^{\circ} \mathbf{C}$	Electrical conductivity when solid	Electrical conductivity when liquid
A	1760	327	good	good
B	69	-95	poor	good
C	1499	777	poor	good
D	4828	3551	poor	poor
E	2751	1539	good	good

(a) (i) Which two substances A, B, C, D or E have delocalised electrons?
\qquad and
(ii) Explain your answer. \qquad
\qquad
(b) Explain why substance \mathbf{D} could be diamond.
\qquad
\qquad
\qquad
(c) Explain why substance C can be used as an electrolyte.
\qquad
\qquad
\qquad

THIS IS THE END OF THE QUESTION PAPER

BLANK PAGE DO NOT WRITE ON THIS PAGE

DO NOT WRITE ON THIS PAGE

For Examiner＇s use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	

| Total |
| :---: | :--- |
| Marks |

Examiner Numbe

Permission to reproduce all copyright material has been applied for．
In some cases，efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified．

