Rewarding Learning General Certificate of Secondary Education

2015-2016

Double Award Science: Chemistry

Unit C1 Foundation Tier

[GSD21] THURSDAY 12 NOVEMBER 2015, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all ten** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Question **5**. A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

Centre Number

BLANK PAGE

- 1 Lists of chemical terms and their meanings are given below.
 - (a) Draw a line to match each chemical term with the correct meaning. One has been done for you.

Examiner Only Marks Remar

- 2 There are three states of matter, **solid**, **liquid** and **gas**.
 - (a) Complete the table below which gives 5 properties of solids, liquids and gases. For each property, place a tick (✓) in the correct box. The first one has been done for you.

Property	Solid	Liquid	Gas
Can be compressed			\checkmark
Takes the volume and shape of the container			
Takes only the shape of the container			
Will condense when cooled			
Has a fixed shape			

[4]

Examiner Only Marks Remark

The table below lists the melting points and boiling points of four substances **A**, **B**, **C** and **D**.

Substance	Melting point/°C	Boiling point/°C
А	114	444
В	-220	-118
С	-7	59
D	3500	4827

(b) Which of the substances A, B, C or D is in the liquid state at:

(i)	20 °C? _	[1]
(ii)	200 °C?	[1]

Fou des	ur su script	bstances E , F , G and H are described below. Read each tion carefully and answer the questions which follow.		Examiner Marks F	r O Rei
Sub pow	ostar vder	nce E is a green solid which when heated produces a black y solid and a gas.			
(a)	ls s	ubstance E an element, a compound or a mixture?			
			[1]		
(b)	Sub and	ostance F is a silvery grey solid which is a good conductor of he I electricity.	at		
	(i)	Substance F is a mixture of metals. What name is given to this type of mixture?			
			[1]		
	(ii)	Give two other properties, apart from being a good conductor of heat and electricity, which you would expect a mixture of metal have.	of s to		
		1			
		2	[2]		
(c)	Sub bur	ostance G is a colourless gas which forms only water when it ns.			
	(i)	Substance G is an element. What is the name of substance G ?	?		
			[1]		
	(ii)	Complete the sentence.			
		An element is a substance which			
			[1]		
(d)	Sub gas	ostance H is a black liquid which separates easily into different ses and liquids.			
	Exp	plain why H can be described as a mixture.			
			[1]		

(e) Substance H can be separated using the apparatus below.

- 4 The diagram below represents an atom.
 - (a) Complete the labels A and B on the diagram.

Examiner Only Marks Remar

stored under oil, describe how you could safely react a piece of sodium with water and what you would see happening.		Examin Marks	er Only Remar
In this question you will be assessed on your written communication skills including the use of specialist scientific terms.			
safely carrying out the reaction:			
observations:			
[6]			
	stored under oil, describe how you could safely react a piece of sodium with water and what you would see happening. In this question you will be assessed on your written communication skills including the use of specialist scientific terms. safely carrying out the reaction:	stored under oil, describe how you could safely react a piece of sodium with water and what you would see happening. In this question you will be assessed on your written communication skills including the use of specialist scientific terms. safely carrying out the reaction:	stored under oil, desóribe how you could safely react a piece of sodium with water and what you would see happening. In this question you will be assessed on your written communication skills including the use of specialist scientific terms. safely carrying out the reaction:

Some tap water contains dissolved calcium chloride (CaCl₂) and dissolved 6 Examiner Only calcium hydrogen carbonate, $Ca(HCO_3)_2$. Marks Remar (a) Give two reasons why calcium hydrogen carbonate and calcium chloride could be **ionic** compounds. 1._____ 2._____[2] (b) Draw the electronic configuration of the calcium ion and give the charge. charge calcium ion [2] (c) How many oxygen atoms are there in the formula $Ca(HCO_3)_2$? ____ [1] Some tap water can contain dissolved magnesium sulfate or dissolved potassium carbonate. (d) Write the formulae for magnesium sulfate and potassium carbonate. magnesium sulfate _____ potassium carbonate _____ [2]

- 7 The Periodic Table is used by chemists to help them understand the reactions of the elements. John Newlands was one of the first chemists to notice repeating patterns in the properties and reactions of the elements.
 - (a) What name did Newlands give to the repeating pattern observed in the properties of the elements?

_____ [1]

Examiner Only

Marks Remar

(b) Almost a decade after Newlands, Dmitri Mendeleev produced a Periodic Table, part of which is shown below.

Н							
Li	Ве	В	С	Ν	0	F	
Na	Mg	AI	Si	Ρ	S	CI	
K Cu	Ca Zn		Ti	V As	Cr Se	Mn Br	Fe Co Ni

(i) In what order did both Mendeleev and Newlands arrange the elements?

_____ [1]

(ii) Which Group of elements is missing from the Periodic Table developed by Mendeleev?

_____ [1]

- (iii) Suggest why Mendeleev placed calcium and zinc in the same position in the Periodic Table.
- _____ [1]
- (c) Name the element which is in Group 7 and Period 3 of the modern Periodic Table.

11

_____ [1]

8	Met	tal o	kides are bases. They react with strong acids to form salts.		Examin Marks	er Only Remark
	(a)	Wh	at is the pH range of a strong acid?	[1]		
	Сор	oper	oxide reacts with sulfuric acid.			
	(b)	(i)	Complete the word equation below for this reaction.			
сор	per o	oxid	$e + sulfuric acid \rightarrow +$	[2]		
		(ii)	Why can this reaction be described as a neutralisation reaction	on?		
				[2]		
		(iii)	What colour change is observed in the solution as this reac is happening?	tion		
			from to	[2]		
	Soc	lium	oxide reacts with hydrochloric acid.			
	(c)	(i)	Complete a balanced symbol equation for the reaction betwe sodium oxide and hydrochloric acid.	en		
			$Na_2O + HCI \rightarrow +$	[3]		
		(ii)	Sodium oxide is an alkali. Why could sodium oxide be descri as an alkali?	bed		
				[2]		

The diagram below shows the apparatus used in the laboratory to conduct 9 Examiner Only electricity through molten lithium chloride. Marks Remarl graphite rods molten lithium chloride heat © CCEA (a) What is the name given to the graphite rods? _____ [1] (b) Give one reason why graphite is used to make these rods. ____ [1] (c) Name the type of particle which can move and carry the charge in the molten lithium chloride. _____ [1] (d) What is formed at the cathode when molten lithium chloride undergoes electrolysis? _____ [1]

This	s question is about covalent structures and covalent bonding.		Examiner Or
(a)	What is a covalent bond?	[4]	
		_ [1]	
(b)	Draw a dot and cross diagram to show the arrangement of electrons a molecule of hydrogen chloride (HCI). Show outer electrons only	ons in	
		[3]	
(c)	Complete the paragraph below which explains why giant covalent structures have much higher melting points than molecular covale structures.	ent	
	There are extremely strong forces of attraction between		
	the in a giant covalent structure which		
	take a lot of heat energy to There are		
	weak forces of attraction between the in		
	a molecular covalent structure which do not require a lot of		
	energy to	[3]	
	THIS IS THE END OF THE QUESTION PAPER		

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.