Rewarding Learning

General Certificate of Secondary Education 2015–2016

Double Award Science: Chemistry

Unit C1 Higher Tier

[GSD22]

THURSDAY 12 NOVEMBER 2015, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Write your answers in the spaces provided in this question paper.

Answer all eight questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Question **2(b)**. A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper. For Examiner's
use onlyQuestion
NumberMarks1123345678Total
Marks1

Candidate Number

BLANK PAGE

Some tap water contains dissolved calcium chloride (CaCl₂) and dissolved 1 Examiner Only calcium hydrogen carbonate, Ca(HCO₃)₂. Marks Rema (a) Give two reasons why calcium hydrogen carbonate and calcium chloride could be **ionic** compounds. 1._____ 2._____[2] (b) Draw the electronic configuration of the calcium ion and give the charge. charge calcium ion [2] (c) How many oxygen atoms are there in the formula $Ca(HCO_3)_2$? _____ [1] Some tap water can contain dissolved magnesium sulfate or dissolved potassium carbonate. (d) Write the formulae for magnesium sulfate and potassium carbonate. magnesium sulfate _____ potassium carbonate _____ [2] (e) What colour are solid magnesium sulfate and solid potassium carbonate? _____ [1]

[Turn over

- 2 The Periodic Table is used by chemists to help them understand the reactions of the elements. John Newlands was one of the first chemists to notice repeating patterns in the properties and reactions of the elements.
 - (a) What name did Newlands give to the repeating pattern observed in the properties of the elements?

_____ [1]

Examiner Only

Marks Remark

(b) Almost a decade after Newlands, Dmitri Mendeleev produced a Periodic Table, part of which is shown below.

Н							
Li	Ве	В	С	Ν	0	F	
Na	Mg	AI	Si	Ρ	S	CI	
K Cu	Ca Zn		Ti	V As	Cr Se	Mn Br	Fe Co Ni

Using your knowledge and understanding, describe the main differences between the Modern Periodic Table and the Periodic Table developed by Mendeleev. In your answer make it clear which version of the Periodic Table you are referring to.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

	-	
	-	
	-	
	_	
	-	
	-	
	-	
	-	
	.	
	-	
	-	
	-	
	.	
[0]		
		I

Examiner Only Marks Remark

3	Met	tal o	kides are bases. They react with strong acids to form salts.		Examin Marks	er Only Remark
	(a)	Wh	at is the pH range of a strong acid?	[1]		
	Сор	oper	oxide reacts with sulfuric acid.			
	(b)	(i)	Complete the word equation below for this reaction.			
сор	per o	oxid	$e + sulfuric acid \rightarrow +$	[2]		
		(ii)	Why can this reaction be described as a neutralisation reaction	on?		
				[2]		
		(iii)	What colour change is observed in the solution as this reac is happening?	tion		
			from to	[2]		
	Soc	lium	oxide reacts with hydrochloric acid.			
	(c)	(i)	Complete a balanced symbol equation for the reaction betwe sodium oxide and hydrochloric acid.	en		
			$Na_2O + HCI \rightarrow +$	[3]		
		(ii)	Sodium oxide is an alkali. Why could sodium oxide be descri as an alkali?	bed		
				[2]		

BLANK PAGE

(Questions continue overleaf)

- 4 Metals, such as copper, are good conductors of electricity. Metal compounds, such as sodium chloride will conduct electricity when they are molten or dissolved in water.
 - (a) Complete the table below which gives information about how copper and sodium chloride solution conduct electricity.

Name of conductor	Name of the type of particle which moves and carries the charge	Effect of the passage of electricity on the conductor (A) No effect (B) Conductor breaks down (C) The conductor melts
copper		
sodium chloride solution		
		[4]

The diagram below shows the apparatus used in the laboratory for the electrolysis of molten lithium chloride.

(b) (i) Give one reason why graphite is used to make these electrodes.

- ____ [1]
- (ii) Write a half equation for the reaction which happens at the cathode when molten lithium chloride undergoes electrolysis.

[2]

Examiner Only

Marks Remar

Aluminium is extracted from its ore by passing electricity through a molten Examiner Only mixture of alumina and cryolite. Marks Remark (c) (i) How is alumina produced? [2] (ii) Give two reasons why cryolite is used in the extraction of aluminium. 1. _____ 2._____[2] During the process a crust of aluminium oxide is formed on the top of the molten mixture. (d) Give one advantage of this crust. _____ [1] (e) Give two reasons why recycling aluminium is preferable to having to extract even more of the metal by electrolysis. 1._____ 2. _____ [2]

(a) What is a covalent bond? [1] (b) Draw a dot and cross diagram to show the covalent bonding in a molecule of hydrogen chloride (HCl). Show outer electrons only. [3] (c) Complete the paragraph below which explains why giant covalent structures have much higher melting points than molecular covalent structures. [3] (c) Complete the paragraph below which explains why giant covalent structures have much higher melting points than molecular covalent structures. [3] (c) There are extremely strong forces of attraction between the in a giant covalent structure which take a lot of heat energy to There are weak forces of attraction between the in a giant covalent structure which take a lot of heat energy to There are weak forces of attraction between the in a giant covalent of energy to [3] (d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick ([3] (c) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick ([3] (c) Loose the two properties, from the list below, which are typical of many molecules of electricity	his question is about covalent structures and covalent bonding.	Examiner Onl
 (b) Draw a dot and cross diagram to show the covalent bonding in a molecule of hydrogen chloride (HCl). Show outer electrons only. (c) Complete the paragraph below which explains why giant covalent structures have much higher melting points than molecular covalent structures. There are extremely strong forces of attraction between the There are extremely strong forces of attraction between the There are weak forces of attraction between the There are weak forces of attraction between the There are weak forces of attraction between the There are molecular covalent structure which do not require a lot of energy to [3] (d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (<) in the two correct boxes. can be compressed in the two correct boxes. 	a) What is a covalent bond?	_ [1]
 (c) Complete the paragraph below which explains why giant covalent structures have much higher melting points than molecular covalent structures. There are extremely strong forces of attraction between the in a giant covalent structure which take a lot of heat energy to There are weak forces of attraction between the in a molecular covalent structure which do not require a lot of energy to [3] (d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (in the two correct boxes. can be compressed	b) Draw a dot and cross diagram to show the covalent bonding in a molecule of hydrogen chloride (HCI). Show outer electrons only.	
 [3] (c) Complete the paragraph below which explains why giant covalent structures have much higher melting points than molecular covalent structures. There are extremely strong forces of attraction between the in a giant covalent structure which take a lot of heat energy to There are weak forces of attraction between the in a molecular covalent structure which do not require a lot of energy to [3] (d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (✓) in the two correct boxes. can be compressed in the list below. 		
 c) Complete the paragraph below which explains why giant covalent structures have much higher melting points than molecular covalent structures. There are extremely strong forces of attraction between the There are extremely to There are weak forces of attraction between the There are weak forces of attraction between the There are extremely structure which do not require a lot of energy to [3] d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (in the two correct boxes. can be compressed		[3]
There are extremely strong forces of attraction between the in a giant covalent structure which take a lot of heat energy to There are weak forces of attraction between the in a molecular covalent structure which do not require a lot of energy to [3] d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick () in the two correct boxes.<br can be compressed insoluble in water ductile non-conductors of electricity colourless gases	c) Complete the paragraph below which explains why giant covalen structures have much higher melting points than molecular coval structures.	nt lent
the in a giant covalent structure which take a lot of heat energy to There are weak forces of attraction between the in a molecular covalent structure which do not require a lot of energy to [3] d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (✓) in the two correct boxes. can be compressed	There are extremely strong forces of attraction between	
take a lot of heat energy to There are weak forces of attraction between the in a molecular covalent structure which do not require a lot of energy to (3) d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (insoluble in water ductile non-conductors of electricity colourless gases	the in a giant covalent structure which	
weak forces of attraction between the in a molecular covalent structure which do not require a lot of energy to (3) d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (insoluble in water ductile non-conductors of electricity colourless gases	take a lot of heat energy to There are	
a molecular covalent structure which do not require a lot of energy to [3] d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (✓) in the two correct boxes. can be compressed	weak forces of attraction between the in	
energy to [3] d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (can be compressed insoluble in water ductile non-conductors of electricity colourless gases	a molecular covalent structure which do not require a lot of	
 d) Choose the two properties, from the list below, which are typical of many molecules which have molecular covalent or giant covalent structures. Place a tick (✓) in the two correct boxes. can be compressed insoluble in water ductile non-conductors of electricity colourless gases 	energy to	[3]
can be compressed insoluble in water ductile non-conductors of electricity colourless gases	d) Choose the two properties, from the list below, which are typical many molecules which have molecular covalent or giant covalent structures. Place a tick (✓) in the two correct boxes.	of t
insoluble in water ductile non-conductors of electricity colourless gases	can be compressed	
ductile	insoluble in water	
non-conductors of electricity	ductile	
colourless gases	non-conductors of electricity	
	colourless gases	

6	The table below summarises the observations made when solutions of the
	halogens are added to solutions of the halide ions.

halide solution halogen	potassium chloride solution	potassium bromide solution	potassium iodide solution
chlorine		colourless solution becomes orange-brown	colourless solution becomes dark brown
bromine	no reaction		colourless solution becomes dark brown
iodine	no reaction	no reaction	
			© CCEA

(a) Explain why bromine solution does not react with potassium chloride solution.

_____ [2]

(b)	Name the type of reaction that takes place between potassium
	bromide and chlorine.

_ [1]

Examiner Only Marks Remark

- (c) Write a balanced **symbol** equation for the reaction between chlorine and potassium iodide.
 - ____ [3]

(d) Explain in terms of their electronic structures why the halogens have similar chemical properties.

_____ [2]

7 The apparatus shown below may be used in the laboratory to demonstrate Examiner Only that water (H_2O) is a compound made from the elements hydrogen and Marks Remarl oxygen. oxygen gas collects here hydrogen gas collects here © CCEA (a) Describe a chemical test for water. _____ [3] In one demonstration the water decomposed to form 10 cm³ of hydrogen gas and 5 cm^3 of oxygen gas. (b) Explain why the volume of hydrogen formed was exactly twice as much as the volume of oxygen formed. _____ [1] (c) Describe a test for hydrogen. _____ [2]

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.