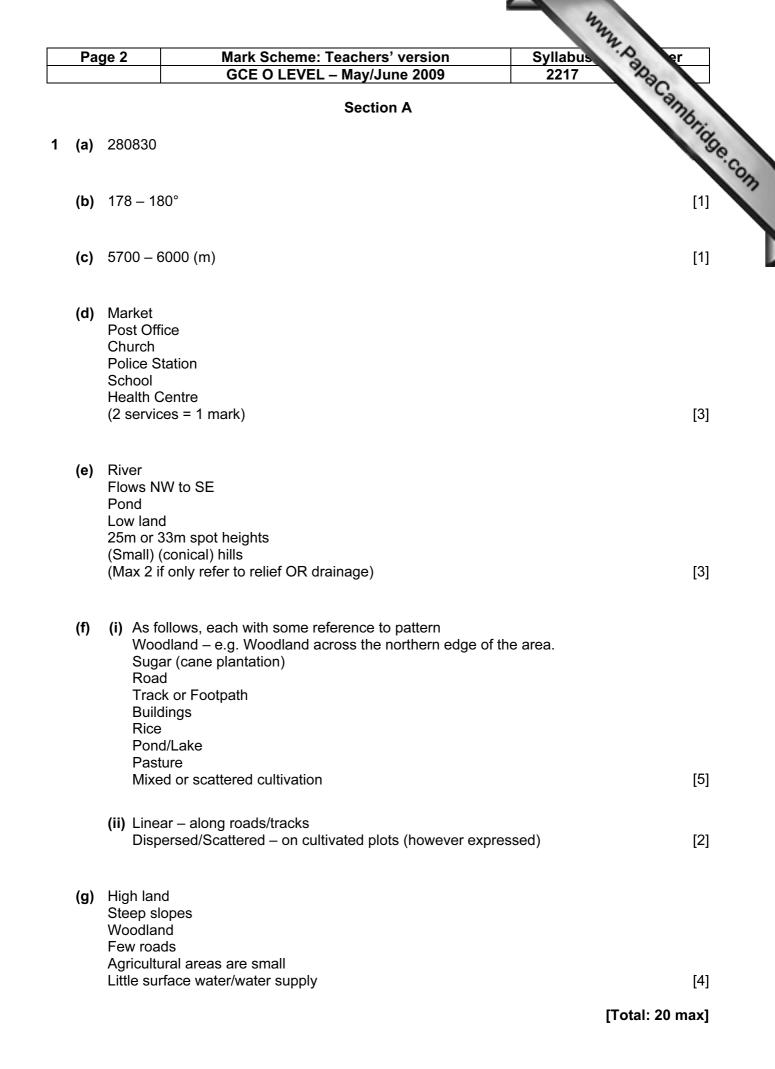
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level**

www.papacambridge.com MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

2217 GEOGRAPHY

2217/02


Paper 2 (Investigation and Skills), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

GCE O LEVEL – May/June 2009 2217	er
	30
	am
	on
Mark Scheme: Teachers' version Syllabus GCE O LEVEL – May/June 2009 2217 points plotted correctly. (Lines not needed)	
points plotted correctly. (Lines not needed)	[1
	[1
shade temperature	
t kept dry een reflects direct sunlight	
res control air circulation	
ound so not affected by ground temperature	[4
[Tota	al: 8 max
ect position of isoline	[1]
nin Level 8 zone	[1]
People – Felt by all/trouble walking Moveable Objects – Objects fall/displaced horizontally/furniture moves Fixed Objects – Cracked plaster/slight damage to poorly-built buildings/	[3]
1 for level) glass/pots	
f degree of movement ell	
f degree of movement ell s walked	ري در
f degree of movement ell s walked alking	[3]
f degree of movement ell s walked alking	[3] al: 8 max
f degree of movement ell s walked alking Bay/Water – Any water activity ks/playing fields – Any appropriate activity s – Any appropriate activity	
f degree of movement ell s walked alking Bay/Water – Any water activity ks/playing fields – Any appropriate activity	
f degree of movement ell s walked alking Bay/Water – Any water activity ks/playing fields – Any appropriate activity s – Any appropriate activity Any appropriate activity nent and activity both required for each mark) ng area – low/scattered buildings	al: 8 max
f degree of movement ell s walked alking Bay/Water – Any water activity ks/playing fields – Any appropriate activity s – Any appropriate activity Any appropriate activity hent and activity both required for each mark)	al: 8 max
f degree of movement ell s walked alking [Tota Bay/Water – Any water activity ks/playing fields – Any appropriate activity s – Any appropriate activity Any appropriate activity hent and activity both required for each mark) ng area – low/scattered buildings - tall/crowded buildings trial area – Presence of docks/port/jetty te/adjacent water body	al: 8 max
f degree of movement ell s walked alking Bay/Water – Any water activity ks/playing fields – Any appropriate activity s – Any appropriate activity Any appropriate activity nent and activity both required for each mark) ng area – low/scattered buildings - tall/crowded buildings trial area – Presence of docks/port/jetty	al: 8 max

				they are a second	
	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus ser	
	14	90 .	GCE O LEVEL – May/June 2009	2217	
5	(a)	1 million	· · · · ·	a Cambrid	
	(b)	Morocco Spain = :		Syllabus 2217 AnaCanthitige.con	
	(c)	Spain les	ependents/S more working pop/M more dependents/M I ss young dependents/Morocco more young dependents ore old dependents/Morocco less old dependents	less working pop	
	(d)	•	ectancy is longer in Spain/shorter in Morocco live longer than men in both countries	[2] [Total: 8 max]	
6	(a)	Two corr	rect divisions with shading as in key.	[2]	
	(b)	Brazil mo Brazil mo	ss arable/India more arable ore forest/woodland/India less forest/woodland ore other/India less other ents must be comparative)	[3]	
	(c)	Settleme Industry	nd/Savanna/Pasture ent/Towns/Urban		
		Roads/R	Railways/Airport	[3]	
				[Total: 8 max]	

Page \$	5	Mark So	heme: Teac	hers' versi	on	Syllabu	. A.	er
		GCE O	LEVEL – Ma	ay/June 2 <mark>0</mark> 0)9	2217	Day	
			Se	ection B			1	mb
ch line is	s a separ	ate mark. A /	is an altern	ative answ	er.			19
(a) (i)	Counting Synchro Tally me Add up	dent on each g traffic comin nise timing thod of record totals at the ei <u>ts for recordin</u> ent used – mu	g past them o ling or autom nd g data.	on 'their' sid	r	of town	www.PapaCa	[4]
(ii)	Long en To avoid	ough for relial I getting bored ent number to	ble data (NO ⁻ I/lose concer	T "accurate" htration/keep	unless qual o focus on co	,		[2]
(b) (i)		n points = 2 @ must be solid			hading incor	rect/not don	e.	[2]
(ii)	•	Road	not sites); all	correct = 1				[1]
(iii)	Example At three (Can ref Exception Rank or	<u>spects of par</u> sites there is <u>er to site num</u> on is Parkway der of roads is to cars throug	more traffic <u>g</u> bers > name (Site 2) same for tra	going out of <u>s here)</u> affic going in	the town cer to and out o	ntre than into f the centre.	o the centre	<u>ulsory.</u> [3]
(iv)	the towr <u>NOT go</u>	ion: Hypothes n centre. <u>(Re</u> ing in/out alon reserved Tick	<u>ad different o</u> g one street.	<u>directions as</u>)	<u>s along stree</u>	ets/towards		
	data but Kingswa Station	es of reasons not compulso ay road traffic Road traffic Bl	ry; compared BECAUSE le ECAUSE lead	<u>d data = 1D</u> ads to majo ds to the sta	<u>mark. Use</u> r city ition/market.	<u>Tick D.</u>	<u>Illow max. 2</u>	<u>if use</u>

Kingsway more traffic BECAUSE leads to car park. Parkway more BECAUSE leads to shopping centre.

[4]

Page 6	1	Mark Scheme: Teachers' version	Syllabus Syllabus
		GCE O LEVEL – May/June 2009	2217 23
(c) (i)	Plot	/ lines drawn on map (4 mm/9 mm). Tolerance of 1 mm e both flows = 2@1 mark BUT max. 1 if shading is incorre re arrow heads or arrows on wrong side of road.	
(ii)		e traffic going into centre than out of centre at 08.00 ern is reversed at 17.00	[2
(iii)		<u>clusion</u> : Hypothesis 2 is correct OR traffic flow <u>does</u> v If "partially true" credit if can justify. 1 mark reserved Ti	vary at different times of the
	Tick Com Retu Scho	mples of reasons (Tick R): 3max. Allow max. 2 if use da <u>D.</u> muting into <u>work</u> in the town centre urning <u>home</u> at the end of the working day ool run traffic er peak in middle of day – shoppers <u>(Not at 8 am)</u>	[4
(d) (i)	Surv More Surv Com Doul	dit improving techniques already used NOT n ationnaires. Examples include: reys done more frequently during the day e survey points to give greater coverage reys done on different work days to see if there is a cons aparison with survey done on a non-work day such as we ble up on students/groups doing survey, to minimise tally "Increase time of counting"	eekend
(ii)	Spee Occu Nois Atmo Type	<u>mples:</u> ed of traffic flow on key roads upancy of vehicles se of traffic ospheric pollution es of vehicles using different roads e.g. bicycles. se of origin	
			nublia transmart" [0
	<u>NO I</u>	"accidents/traffic jams or congestion/pedestrian traffic/p	public transport" [2

GCE O LEVEL – May/June 2009 2217 (a) Three different factors based on criteria such as: Safety/issues with wild animals/water-borne diseases Accessibility Approximately equidistant from other sites Away from human impact which might affect results Avoid sites where obstacles may obstruct flow [3]	Page 7	Mark Scheme: Teachers' version Syllabus	er					
 (b) (i) <u>Refs to equipment</u>: tape, stopwatch, floats, poles <u>MUST BE QUALIFIED</u>. Measure 10 m distance along the river Use floats from fixed point to point Use stopwatch to time the float Sample different points across river channel Measure three times then calculate mean. <u>Max. 2 for refs to Fig. 5 and no equipment; emphasis is on fieldwork.</u> [4] (ii) <u>Three parts to calculation; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional answer) Mean length of time = 75/3 = 25 (secs) Distance/time = 10 (m)/25 (secs) = 0.4 m/sec (No credit for 0.4 without units) [3]</u> (iii) Plotting sites 5 and 6 on graph = 2 @1 mark BUT 1 max. if do not join with line. Do not have to write site numbers. [2] (iv) Hypothesis is generally true OR velocity <u>does</u> increase downstream (<u>1 mark reserved Tick H</u>). Second mark can be for justifying with data (D) Point 3 result is an anomaly [2] (c) (i) <u>Examples</u> Systematic or random sampling technique OR describe e.g. take samples at regular intervals; use random numbers. Measure with tape at 1 metre intervals across river channel Pick up stone which ruler/measuring pole rests on Take a number of samples at each point across the river [2] (ii) <u>Mark for what they do with equipment NOT naming equipment. 1 mark for size and 1 mark for roundness. Examples: Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) [2]</u> (iii) <u>No marks for agreeing with Hypothesis. Asked for conclusions. Bedload become smaller downstream (according to longest</u>	Ŭ	GCE O LEVEL – May/June 2009 2217						
 (b) (i) <u>Refs to equipment</u>: tape, stopwatch, floats, poles <u>MUST BE QUALIFIED</u>. Measure 10 m distance along the river Use floats from fixed point to point Use stopwatch to time the float Sample different points across river channel Measure three times then calculate mean. <u>Max. 2 for refs to Fig. 5 and no equipment; emphasis is on fieldwork.</u> [4] (ii) <u>Three parts to calculation; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional in first 2 only. Must show working for all three marks (If use calculator; units optional answer) Mean length of time = 75/3 = 25 (secs) Distance/time = 10 (m)/25 (secs) = 0.4 m/sec (No credit for 0.4 without units) [3]</u> (iii) Plotting sites 5 and 6 on graph = 2 @1 mark BUT 1 max. if do not join with line. Do not have to write site numbers. [2] (iv) Hypothesis is generally true OR velocity <u>does</u> increase downstream (<u>1 mark reserved Tick H</u>). Second mark can be for justifying with data (D) Point 3 result is an anomaly [2] (c) (i) <u>Examples</u> Systematic or random sampling technique OR describe e.g. take samples at regular intervals; use random numbers. Measure with tape at 1 metre intervals across river channel Pick up stone which ruler/measuring pole rests on Take a number of samples at each point across the river [2] (ii) <u>Mark for what they do with equipment NOT naming equipment. 1 mark for size and 1 mark for roundness. Examples: Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) [2]</u> (iii) <u>No marks for agreeing with Hypothesis. Asked for conclusions. Bedload become smaller downstream (according to longest</u>	(a) <u>Three different factors based on criteria such as:</u> Safety/issues with wild animals/water-borne diseases Accessibility Approximately equidistant from other sites Away from human impact which might affect results Avoid sites where obstacles may obstruct flow [3]							
marks (If use calculator could get 1 for final answer) Mean length of time = 75/3 = 25 (secs) Distance/time = 10 (m)/25 (secs) = 0.4 m/sec (No credit for 0.4 without units) [3] (iii) Plotting sites 5 and 6 on graph = 2 @1 mark BUT 1 max. if do not join with line. Do not have to write site numbers. [2] (iv) Hypothesis is generally true OR velocity does increase downstream (1 mark reserved Tick H). Second mark can be for justifying with data (D) Point 3 result is an anomaly [2] (c) (i) Examples Systematic or random sampling technique OR describe e.g. take samples at regular intervals; use random numbers. Measure with tape at 1 metre intervals across river channel Pick up stone which ruler/measuring pole rests on Take a number of samples at each point across the river [2] (ii) Mark for what they do with equipment NOT naming equipment. 1 mark for size and 1 mark for roundness. Examples: Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) (iii) No marks for agreeing with Hypothesis. Asked for conclusions. Bedload become smaller downstream (according to longest axis) (1) Becomes more rounded/smoother (1) [2] (iv) Must refer to a type of erosion i.e. hydraulic action/attrition/corrosion – accept other phrases e.g. rubbing against each other, power of the	(b) (i)	Measure 10 m distance along the river Use floats from fixed point to point Use stopwatch to time the float Sample different points across river channel Measure three times then calculate mean.	[4]					
 (iii) Plotting sites 5 and 6 on graph = 2 @1 mark BUT 1 max. if do not join with line. <u>Do not have to write site numbers.</u> [2] (iv) Hypothesis is generally true OR velocity <u>does</u> increase downstream (<u>1 mark reserved Tick H). Second mark can be for justifying with data (D)</u> Point 3 result is an anomaly [2] (c) (i) <u>Examples</u> Systematic or random sampling technique OR describe e.g. take samples at regular intervals; use random numbers. Measure with tape at 1 metre intervals across river channel Pick up stone which ruler/measuring pole rests on Take a number of samples at each point across the river [2] (ii) <u>Mark for what they do with equipment NOT naming equipment. 1 mark for size and 1 mark for roundness. Examples:</u> Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) [2] (iii) <u>No marks for agreeing with Hypothesis. Asked for conclusions.</u> Bedload become smaller downstream (according to longest axis) (1) Becomes more rounded/smoother (1) [2] (iv) <u>Must refer to a type of erosion i.e. hydraulic action/attrition/corrosion – accept other phrases e.g. rubbing against each other, power of the water.</u> <u>Examples</u> Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1) 	(ii)	marks (If use calculator could get 1 for final answer) Mean length of time = 75/3 = 25 (secs)	<u>ll three</u>					
 Do not have to write site numbers. [2] (iv) Hypothesis is generally true OR velocity <u>does</u> increase downstream (<u>1 mark reserved Tick H</u>). Second mark can be for justifying with data (D) Point 3 result is an anomaly [2] (c) (i) <u>Examples</u> Systematic or random sampling technique OR describe e.g. take samples at regular intervals; use random numbers. Measure with tape at 1 metre intervals across river channel Pick up stone which ruler/measuring pole rests on Take a number of samples at each point across the river [2] (ii) <u>Mark for what they do with equipment NOT naming equipment. 1 mark for size and 1 mark for roundness. Examples:</u> Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) [2] (iii) <u>No marks for agreeing with Hypothesis. Asked for conclusions.</u> Bedload become smaller downstream (according to longest axis) (1) Becomes more rounded/smoother (1) [2] (iv) <u>Must refer to a type of erosion i.e. hydraulic action/attrition/corrosion – accept other phrases e.g. rubbing against each other, power of the water.</u> <u>Examples</u> Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1) 		= 0.4 m/sec (No credit for 0.4 without units)	[3]					
(1 mark reserved Tick H). Second mark can be for justifying with data (D) Point 3 result is an anomaly [2] (c) (i) Examples Systematic or random sampling technique OR describe e.g. take samples at regular intervals; use random numbers. Measure with tape at 1 metre intervals across river channel Pick up stone which ruler/measuring pole rests on Take a number of samples at each point across the river [2] (ii) Mark for what they do with equipment NOT naming equipment. 1 mark for size and 1 mark for roundness. Examples: Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) [2] (iii) No marks for agreeing with Hypothesis. Asked for conclusions. Bedload become smaller downstream (according to longest axis) (1) [2] (iv) Must refer to a type of erosion i.e. hydraulic action/attrition/corrosion – accept other phrases e.g. rubbing against each other, power of the water. [2] [Xiv] Examples Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1)	(iii)		[2]					
Systematic or random sampling technique OR describe e.g. take samples at regular intervals; use random numbers. Measure with tape at 1 metre intervals across river channel Pick up stone which ruler/measuring pole rests on Take a number of samples at each point across the river [2] (ii) Mark for what they do with equipment NOT naming equipment. 1 mark for size and 1 mark for roundness. Examples: Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) [2] (iii) No marks for agreeing with Hypothesis. Asked for conclusions. Bedload become smaller downstream (according to longest axis) (1) Becomes more rounded/smoother (1) [2] (iv) Must refer to a type of erosion i.e. hydraulic action/attrition/corrosion – accept other phrases e.g. rubbing against each other, power of the water. Examples Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1)	(iv)	(1 mark reserved Tick H). Second mark can be for justifying with data (D)	[2]					
 (ii) Mark for what they do with equipment NOT naming equipment. 1 mark for size and <u>1 mark for roundness. Examples:</u> Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) [2] (iii) No marks for agreeing with Hypothesis. Asked for conclusions. Bedload become smaller downstream (according to longest axis) (1) Becomes more rounded/smoother (1) [2] (iv) Must refer to a type of erosion i.e. hydraulic action/attrition/corrosion – accept other phrases e.g. rubbing against each other, power of the water. Examples Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1) 	(c) (i)	Systematic or random sampling technique OR describe e.g. take samples at intervals; use random numbers. Measure with tape at 1 metre intervals across river channel Pick up stone which ruler/measuring pole rests on	J					
1 mark for roundness. Examples: Measure long axis of stone by using calipers and measuring gap/with ruler (1) Visually estimate roundness by comparing with Roundness Index/Chart (1) [2] (iii) No marks for agreeing with Hypothesis. Asked for conclusions. Bedload become smaller downstream (according to longest axis) (1) [2] (iv) Must refer to a type of erosion i.e. hydraulic action/attrition/corrosion – accept other phrases e.g. rubbing against each other, power of the water. Examples Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1)		Take a number of samples at each point across the river	[2]					
Bedload become smaller downstream (according to longest axis) (1) [2] Becomes more rounded/smoother (1) [2] (iv) Must refer to a type of erosion i.e. hydraulic action/attrition/corrosion – accept other phrases e.g. rubbing against each other, power of the water. Examples Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1)	(ii)	<u>1 mark for roundness. Examples:</u> Measure long axis of stone by using calipers and measuring gap/with ruler (1)						
<u>phrases e.g. rubbing against each other, power of the water.</u> <u>Examples</u> Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1)	(iii)	Bedload become smaller downstream (according to longest axis) (1)	[2]					
Increase in velocity/more powerful water flow (1) leads to more attrition or particles clashing (1)	(iv)		t other					
		Increase in velocity/more powerful water flow (1) leads to more attrition or pa	articles					
			[2]					

[Total: 30]