## AQA

A-level

## Physics data and formulae

For use in exams from the June 2017 Series onwards
[Turn over]

## DATA - FUNDAMENTAL CONSTANTS AND VALUES

QUANTITY SYMBOL VALUE UNITS
speed of light in vacuo
permeability
$\mu_{0} \quad 4 \pi \times 10^{-7}$
$\mathrm{H} \mathrm{m}^{-1}$
of free space

## C

$3.00 \times 10^{8}$
$\mathrm{m} \mathrm{s}^{-1}$
permittivity of
free space
$\varepsilon_{0} \quad 8.85 \times 10^{-12} \quad \mathrm{~F} \mathrm{~m}^{-1}$
magnitude of
the charge of electron
the Planck constant
gravitational $\quad G \quad 6.67 \times 10^{-11} \quad \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
the Avogadro constant
h
$6.63 \times 10^{-34} \quad \mathrm{~J} \mathrm{~s}$
constant
e $\quad 1.60 \times 10^{-19} \quad C$

QUANTITY SYMBOL VALUE UNITS
the Stefan
$\sigma$
$5.67 \times 10^{-8}$
$\mathbf{W m}^{-2} \mathrm{~K}^{-4}$
constant
the Wien constant
electron rest mass
(equivalent to
$5.5 \times 10^{-4} \mathrm{u}$ )
magnitude of electron charge/mass ratio
proton rest
mass
$\underline{e}$
$1.76 \times 10^{11}$
$\mathrm{Ckg}^{-1}$
$2.90 \times 10^{-3} \quad \mathrm{~m} \mathrm{~K}$
$m_{\text {e }}$
$9.11 \times 10^{-31}$
kg
$m_{\mathrm{e}}$ $1.76 \times 10$
(equivalent to
1.00728 u )
proton
charge/mass ratio
neutron rest $\quad m_{n} \quad 1.67(5) \times 10^{-27} \quad \mathbf{~ k g}$ mass
(equivalent to
1.00867 u)
[Turn over]

| QUANTITY | SYMBOL | VALUE | UNITS |
| :--- | :---: | :--- | :--- |
| gravitational <br> field strength | $g$ | 9.81 | $\mathrm{~N} \mathrm{~kg}^{-1}$ |
| acceleration <br> due to gravity | $g$ | 9.81 | $\mathrm{~m} \mathrm{~s}^{-2}$ |
| atomic mass <br> unit <br> (1 u is | u | $\mathbf{1 . 6 6 1} \times 10^{-27}$ | kg |
| equivalent to <br> 931.5 MeV ) |  |  |  |

## 5

## ALGEBRAIC EQUATION

quadratic equation $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

ASTRONOMICAL DATA
BODY MASS/kg MEAN RADIUS/m

Sun $\quad 1.99 \times 10^{30} \quad 6.96 \times 108$
Earth
$5.97 \times 1024$
$6.37 \times 106$

## GEOMETRICAL EQUATIONS

| arc length | $=r \theta$ |
| :--- | :--- |
| circumference of circle | $=2 \pi r$ |
| area of circle | $=\pi r^{2}$ |
| curved surface area of cylinder | $=2 \pi r h$ |
| area of sphere | $=4 \pi r^{2}$ |
| volume of sphere | $=\frac{4}{3} \pi r^{3}$ |

[Turn over]

## PARTICLE PHYSICS

| CLASS | NAME | SYMBOL | REST <br> ENERGY/MeV |
| :--- | :--- | :---: | :---: |
| photon | photon | $\gamma$ | 0 |
| lepton | neutrino | $v_{\mathbf{e}}$ | 0 |
|  |  | $v_{\mu}$ | 0 |
|  | electron | $\mathbf{e}^{ \pm}$ | 0.510999 |
|  | muon | $\mu^{ \pm}$ | 105.659 |
| mesons | $\pi$ meson | $\pi^{ \pm}$ | 139.576 |
|  |  | $\pi^{0}$ | 134.972 |
|  | K meson | $\mathrm{K}^{ \pm}$ | 493.821 |
|  |  | $\mathrm{~K}^{0}$ | 497.762 |
| baryons | proton | p | $\mathbf{9 3 8 . 2 5 7}$ |
|  | neutron | n | $\mathbf{9 3 9 . 5 5 1}$ |

## PROPERTIES OF QUARKS

antiquarks have opposite signs

| TYPE | CHARGE | BARYON <br> NUMBER | STRANGENESS |
| :---: | :---: | :---: | :---: |
| $\mathbf{u}$ | $+\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{e}$ | $+\frac{1}{3}$ | $\mathbf{0}$ |
| $\mathbf{d}$ | $-\frac{\mathbf{1}}{\mathbf{3}} \boldsymbol{e}$ | $+\frac{1}{3}$ | $\mathbf{0}$ |
| $\mathbf{s}$ | $-\frac{\mathbf{1}}{\mathbf{3}} \boldsymbol{e}$ | $+\frac{\mathbf{1}}{\mathbf{3}}$ | $\mathbf{- 1}$ |

## PROPERTIES OF LEPTONS

|  |  | Lepton number |
| :--- | :--- | :---: |
| Particles: | $\mathrm{e}^{-}, v_{\mathrm{e}} ; \mu^{-}, \nu_{\mu}$ | +1 |
| Antiparticles: | $\mathrm{e}^{+}, \overline{\nu_{\mathrm{e}}}, \mu^{+}, \overline{v_{\mu}}$ | -1 |

[Turn over]

## PHOTONS AND ENERGY LEVELS

photon energy

$$
E=h f=\frac{h c}{\lambda}
$$

photoelectricity

$$
h f=\phi+E_{\mathrm{k}(\max )}
$$

energy levels

$$
h f=E_{1}-E_{2}
$$

de Broglie wavelength $\quad \lambda=\frac{h}{p}=\frac{h}{m v}$

## WAVES

wave speed $\quad c=f \lambda \quad$ period $\quad f=\frac{1}{T}$
$\begin{aligned} & \text { first } \\ & \text { harmonic }\end{aligned} \quad f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$
fringe
spacing

$$
w=\frac{\lambda D}{s}
$$

$\begin{aligned} & \text { diffraction } \\ & \text { grating }\end{aligned} d \sin \theta=n \lambda$
refractive index of a substance $s, n=\frac{c}{c_{s}}$
for two different substances of refractive indices $n_{1}$ and $n_{2}$,
law of refraction $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
critical angle $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$ for $n_{1}>n_{2}$
[Turn over]

## MECHANICS

moments
moment $=\boldsymbol{F d}$
velocity and
acceleration

$$
v=\frac{\Delta s}{\Delta t}
$$

$$
a=\frac{\Delta V}{\Delta t}
$$

equations of motion
$v=u+a t$
$\mathrm{s}=\left(\frac{u+v}{2}\right) t$
$v^{2}=u^{2}+2 a s$
$s=u t+\frac{a t^{2}}{2}$
force
$\boldsymbol{F}=\boldsymbol{m} \boldsymbol{a}$
force
impulse
work, energy
$W=F s \cos \theta$
and power

$$
\begin{aligned}
& E_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad \Delta E_{p}=m g \Delta h \\
& P=\frac{\Delta W}{\Delta t}, P=F v \\
& \text { efficiency }=\frac{\text { useful output power }}{\text { input power }}
\end{aligned}
$$

## MATERIALS

density $\quad \rho=\frac{m}{V}$
Hooke's law $\quad F=k \Delta L$
Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }} \quad \begin{gathered}\text { tensile stress }= \\ \text { tensile strain }= \\ \\ \end{gathered}$
energy stored $\quad E=\frac{1}{2} F \Delta L$
[Turn over]

## ELECTRICITY

current and pd $\quad I=\frac{\Delta Q}{\Delta t} \quad V=\frac{W}{Q} \quad R=\frac{V}{I}$
resistivity

$$
\rho=\frac{R A}{L}
$$

resistors in series

$$
R_{\mathrm{T}}=R_{1}+R_{\mathbf{2}}+R_{\mathbf{3}}+\ldots
$$

resistors in parallel

$$
\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

power

$$
\mathrm{P}=V I=I^{2} \mathrm{R}=\frac{V^{2}}{R}
$$

emf

$$
\varepsilon=\frac{E}{Q} \quad \varepsilon=I(R+r)
$$

## CIRCULAR MOTION

magnitude of angular speed

$$
\omega=\frac{v}{r}
$$

$$
\omega=2 \pi f
$$

centripetal acceleration

$$
a=\frac{v^{2}}{r}=\omega^{2} r
$$

centripetal force $F=\frac{m v^{2}}{r}=m \omega^{2} r$

## SIMPLE HARMONIC MOTION

acceleration

$$
\begin{aligned}
& a=-\omega^{2} x \\
& x=A \cos (\omega t)
\end{aligned}
$$

displacement
speed

$$
v= \pm \omega \sqrt{\left(A^{2}-x^{2}\right)}
$$

maximum speed

$$
v_{\max }=\omega A
$$

maximum acceleration

$$
a_{\max }=\omega^{2} A
$$

for a mass-spring system $T=2 \pi \sqrt{\frac{m}{k}}$
for a simple pendulum $\quad T=2 \pi \sqrt{\frac{l}{g}}$
[Turn over]

## THERMAL PHYSICS

energy to change temperature
$Q=m c \Delta \theta$
energy to change
$Q=m l$
state
gas law
$p V=n R T$
$p V=N k T$
kinetic theory model

$$
p V=\frac{1}{3} N m\left(c_{\mathrm{rms}}\right)^{2}
$$

kinetic energy of gas molecule

$$
\frac{1}{2} m\left(c_{\mathrm{rms}}\right)^{2}=\frac{3}{2} k T=\frac{3 R T}{2 N_{\mathrm{A}}}
$$

## GRAVITATIONAL FIELDS

force between two masses

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

gravitational field
strength
$g=\frac{F}{m}$
magnitude of
gravitational field strength in a radial

$$
g=\frac{G M}{r^{2}}
$$

field
work done $\quad \Delta W=m \Delta V$
gravitational potential

$$
\begin{aligned}
& V=-\frac{G M}{r} \\
& g=-\frac{\Delta V}{\Delta r}
\end{aligned}
$$

[Turn over]

## ELECTRIC FIELDS AND CAPACITORS

force between two point charges
force on a charge
field strength for a uniform field
work done
field strength for a radial field
electric potential

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r^{2}}
$$

$\boldsymbol{F}=\boldsymbol{E} \boldsymbol{Q}$
$E=\frac{V}{d}$
$\Delta W=Q \Delta V$
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$
field strength
capacitance

$$
\begin{aligned}
E & =\frac{\Delta V}{\Delta r} \\
C & =\frac{Q}{V} \\
C & =\frac{A \varepsilon_{0} \varepsilon_{\mathrm{r}}}{d}
\end{aligned}
$$

capacitor energy
stored
capacitor charging
$E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}$
$Q=Q_{0}\left(1-\mathrm{e}^{-\frac{t}{R C}}\right)$
decay of charge
$\boldsymbol{Q}=\boldsymbol{Q}_{\mathbf{0}} \mathrm{e}^{-\frac{t}{R C}}$
time constant
RC

## MAGNETIC FIELDS

force on a current $\quad F=B I l$
force on a moving charge
$F=B Q v$
magnetic flux
$\Phi=B A$
magnetic flux
linkage
$N \Phi=B A N \cos \theta$
magnitude of induced emf

$$
\varepsilon=N \frac{\Delta \Phi}{\Delta t}
$$

$N \Phi=B A N \cos \theta$
emf induced in a rotating coil

$$
\varepsilon=B A N \omega \sin \omega t
$$

alternating current $\quad I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}} \quad V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}$
transformer equations

$$
\begin{aligned}
& \frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}=\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}} \\
& \text { efficiency }=\frac{I_{\mathrm{S}} V_{\mathrm{S}}}{I_{\mathrm{p}} V_{\mathrm{p}}}
\end{aligned}
$$

[Turn over]

## NUCLEAR PHYSICS

inverse square law for $\gamma$ radiation

$$
I=\frac{k}{x^{2}}
$$

radioactive decay $\quad \frac{\Delta N}{\Delta t}=-\lambda N, N=N_{\mathrm{o}} \mathrm{e}^{-\lambda t}$
activity

$$
A=\lambda N
$$

half-life

$$
T 1 / 2=\frac{\ln 2}{\lambda}
$$

nuclear radius
$R=R_{0} A^{1 / 3}$
energy-mass equation

$$
E=m c^{2}
$$

## OPTIONS

## ASTROPHYSICS

1 astronomical unit $=1.50 \times 10^{11} \mathrm{~m}$
1 light year $=9.46 \times 10^{15} \mathrm{~m}$
1 parsec $=2.06 \times 10^{5} \mathrm{AU}=3.08 \times 10^{16} \mathrm{~m}=3.26 \mathrm{ly}$
Hubble constant, $H=65 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$
$M=\frac{\text { angle subtended by image at eye }}{\text { angle subtended by object at unaided eye }}$
telescope in normal adjustment

$$
M=\frac{f_{0}}{f_{\mathrm{e}}}
$$

Rayleigh criterion

$$
\theta \approx \frac{\lambda}{D}
$$

magnitude equation

$$
m-M=5 \log \frac{d}{10}
$$

Wien's law

$$
\lambda_{\max } T=2.9 \times 10^{-3} \mathrm{~m} \mathrm{~K}
$$

Stefan's law

$$
P=\sigma A T^{4}
$$

## 20

Schwarzschild radius $\quad R_{\mathrm{S}} \approx \frac{2 G M}{c^{2}}$
Doppler shift for $v \ll c \frac{\Delta f}{f}=-\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$
red shift

$$
z=-\frac{v}{c}
$$

Hubble's law

$$
v=H d
$$

## MEDICAL PHYSICS

lens equations

$$
\begin{aligned}
P & =\frac{1}{f} \\
m & =\frac{v}{u}
\end{aligned}
$$

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v}
$$

threshold of hearing $I_{0}=1.0 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$
intensity level

$$
\text { intensity level }=10 \log \frac{I}{I_{0}}
$$

absorption

$$
\begin{aligned}
& I=I_{0} \mathrm{e}^{-\mu x} \\
& \mu_{\mathrm{m}}=\frac{\mu}{\rho}
\end{aligned}
$$

ultrasound imaging $Z=p c$

$$
\frac{I_{\mathrm{r}}}{I_{\mathrm{i}}}=\left(\frac{\mathrm{Z}_{2}-\mathrm{Z}_{1}}{\mathrm{Z}_{2}+\mathrm{z}_{1}}\right)^{2}
$$

half-lives

$$
\frac{1}{T_{\mathrm{E}}}=\frac{1}{T_{\mathrm{B}}}+\frac{1}{T_{\mathrm{P}}}
$$

[Turn over]

## ENGINEERING PHYSICS

moment of inertia $I=\Sigma \boldsymbol{m} r^{2}$
$\begin{aligned} & \text { angular kinetic } \\ & \text { energy }\end{aligned} E_{\mathrm{k}}=\frac{1}{2} I \omega^{2}$
equations of
angular motion
$\omega_{2}=\omega_{1}+\alpha t$

$$
\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta
$$

$\theta=\omega_{1} t+\frac{\alpha t^{2}}{2}$
$\theta=\frac{\left(\omega_{1}+\omega_{2}\right) t}{2}$
torque

$$
\begin{aligned}
T & =\boldsymbol{I} \alpha \\
T & =\boldsymbol{F} r
\end{aligned}
$$

angular
momentum
angular impulse $\quad T \Delta t=\Delta(I \omega)$
work done
$W=T \theta$
power
$P=T \omega$
thermodynamics
$Q=\Delta U+W$
$W=p \Delta V$
adiabatic change $\quad p V^{\gamma}=$ constant
isothermal
change
$p V=$ constant

## 23

heat engines

$$
\text { efficiency }=\frac{W}{Q_{\mathrm{H}}}=\frac{Q_{\mathrm{H}}-Q_{\mathrm{C}}}{Q_{\mathrm{H}}}
$$

maximum theoretical efficiency $=\frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}$
work done per cycle = area of loop
input power $=$ calorific value $\times$ fuel flow rate
indicated power $=($ area of $p-V$ loop $)$
$\times$ (number of cycles per second)
$\times$ (number of cylinders)
output or brake power $\quad P=T \omega$
friction power = indicated power -brake power heat pumps and refrigerators refrigerator: $C O P_{\mathrm{ref}}=\quad \frac{Q_{\mathrm{C}}}{W}=\frac{Q_{\mathrm{C}}}{Q_{\mathrm{H}}-Q_{\mathrm{C}}}$
heat pump: $\operatorname{COP}_{\mathrm{hp}}=\quad \frac{Q_{\mathrm{H}}}{w}=\frac{Q_{\mathrm{H}}}{Q_{\mathrm{H}}-Q_{\mathrm{C}}}$

## [Turn over]

## 24

## TURNING POINTS IN PHYSICS

electrons in fields

$$
\begin{aligned}
F & =\frac{e V}{d} \\
F & =B e v \\
r & =\frac{m v}{B e}
\end{aligned}
$$

$$
1 / 2 m v^{2}=e V
$$

Millikan's
experiment

$$
\frac{Q V}{d}=m g
$$

$$
F=6 \pi \eta r v
$$

Maxwell's formula $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$

$$
\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m e V}}
$$

special relativity

$$
t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

## 25

$$
\begin{aligned}
& I=I_{0} \sqrt{1-\frac{v^{2}}{c^{2}}} \\
& E=m c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

## ELECTRONICS

resonant
frequency

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

$Q$-factor

$$
Q=\frac{f_{0}}{f_{\mathrm{B}}}
$$

operational
amplifiers: open

$$
V_{\mathrm{out}}=A_{\mathrm{OL}}\left(V_{+}-V_{-}\right)
$$

loop
inverting amplifier $\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{\mathrm{f}}}{R_{\text {in }}}$
non-inverting amplifier

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=1+\frac{R_{\mathrm{f}}}{R_{1}}
$$

[Turn over]

## 26

summing amplifier

$$
V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\ldots\right)
$$

$\begin{aligned} & \text { difference } \\ & \text { amplifier }\end{aligned} \quad V_{\text {out }}=\left(V_{+}-V_{-}\right) \frac{R_{\mathrm{f}}}{R_{1}}$

Bandwidth requirement:
for $A M \quad$ bandwidth $=2 f_{M}$
for FM

$$
\text { bandwidth }=2\left(\Delta f+f_{M}\right)
$$

END OF DATA SHEET

## 27

BLANK PAGE

## 28

## BLANK PAGE

## Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

