A-level

А

Physics data and formulae

For use in exams from the June 2017 Series onwards

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	С	3.00×10^{8}	m s ⁻¹
permeability of free space	μ_0	$4\pi \times 10^{-7}$	H m ⁻¹
permittivity of free space	$\boldsymbol{\varepsilon}_0$	8.85×10^{-12}	F m ⁻¹
magnitude of the charge of electron	е	1.60×10^{-19}	С
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	N m ² kg ⁻²
the Avogadro constant	NA	6.02×10^{23}	mol ⁻¹
molar gas constant	R	8.31	J K ⁻¹ mol ⁻¹
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
the Stefan constant	σ	5.67×10^{-8}	$\mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	m _e	9.11 × 10 ^{−31}	kg

electron charge/mass ratio	$\frac{e}{m_{e}}$	1.76×10^{11}	C kg ⁻¹
proton rest mass (equivalent to 1.00728 u)	m _p	1.67(3) × 10 ⁻²⁷	kg
proton charge/mass ratio	$\frac{e}{m_{\rm p}}$	9.58×10^{7}	C kg ⁻¹
neutron rest mass (equivalent to 1.00867 u)	m _n	1.67(5) × 10 ⁻²⁷	kg
gravitational field strength	g	9.81	N kg ⁻¹
acceleration due to gravity	g	9.81	m s ^{−2}
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661 × 10 ⁻²⁷	kg

ALGEBRAIC EQUATION

quadratic equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96 × 10 ⁸
Earth	5.97×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
curved surface area of cylinder	$=2\pi rh$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

PARTICLE PHYSICS

Class	Name	Symbol	Rest energy/MeV
photon	photon	γ	0
lepton	neutrino	v _e	0
		ν _μ	0
	electron	e^{\pm}	0.510999
	muon	μ±	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	K±	493.821
		K ⁰	497.762
baryons	proton	р	938.257
	neutron	n	939.551

PROPERTIES OF QUARKS antiquarks have opposite signs

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	- 1

PROPERTIES OF LEPTONS

		Lepton number
Particles:	e ⁻ , ν _e ; μ ⁻ , ν _μ	+1
Antiparticles:	$e^+, \overline{v_e}, \mu^+, \overline{v_\mu}$	- 1

PHOTONS AND ENERGY LEVELS

photon energy

photoelectricity

energy levels

de Broglie wavelength

$$E = hf = \frac{hc}{\lambda}$$

$$hf = \phi + E_{k \text{(max)}}$$

$$hf = E_1 - E_2$$

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

WAVES

wave speed $c = f\lambda$ period $f = \frac{1}{T}$ first $f = \frac{1}{2l}\sqrt{\frac{T}{\mu}}$

fringe
$$w = \frac{\lambda D}{s}$$
 diffraction $d \sin \theta = n\lambda$
spacing $w = \frac{\lambda D}{s}$ grating $d \sin \theta = n\lambda$

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 , law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$ critical angle $\sin \theta_c = \frac{n_2}{n_1}$ for $n_1 > n_2$

MECHANICS

moments	moment = <i>Fd</i>	
velocity and acceleration	$\boldsymbol{v} = \frac{\Delta \boldsymbol{s}}{\Delta \boldsymbol{t}}$	$a = \frac{\Delta v}{\Delta t}$
equations of motion	v = u + at	$s = \left(\frac{u+v}{2}\right) t$
	$v^2 = u^2 + 2as$	$s = ut + \frac{at^2}{2}$
force	F = ma	
force	$F = \frac{\Delta(m\nu)}{\Delta t}$	
impulse	$\boldsymbol{F}\Delta\boldsymbol{t}=\Delta(\boldsymbol{m}\boldsymbol{\nu})$	
work, energy and power	$W = F s \cos \theta$	
	$E_{\rm k}=\frac{1}{2}\ m\ v^2$	$\Delta E_p = mg\Delta h$
	$P = \frac{\Delta W}{\Delta t}$, $P = Fv$	
	efficiency = useful output pov	
	- inj	put power

MATERIALS

density $\rho = \frac{m}{v}$	Hooke's law $F = k \Delta L$
Young modulus	= tensile stress tensile strain
tensile stress = $\frac{F}{A}$	
tensile strain = $\frac{\Delta L}{L}$	
energy stored	$E = \frac{1}{2} F \Delta L$
ELECTRICITY	
current and pd	$I = \frac{\Delta Q}{\Delta t}$ $V = \frac{W}{Q}$ $R = \frac{V}{I}$
resistivity	$ \rho = \frac{RA}{L} $
resistors in series	$R_{\rm T} = R_1 + R_2 + R_3 + \dots$
resistors in parallel	$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$
power	$P = VI = I^2 R = \frac{V^2}{R}$
emf	$\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R+r)$

CIRCULAR MOTION

magnitude of angular speed	$\omega = \frac{v}{r}$
	$\omega = 2\pi f$
centripetal acceleration	$a = \frac{v^2}{r} = \omega^2 r$
centripetal force	$F = \frac{mv^2}{r} = m\omega^2 r$
SIMPLE HARMONIC	NOTION
acceleration	$a = -\omega^2 x$
displacement	$x = A \cos (\omega t)$
speed	$v = \pm \omega \sqrt{(A^2 - x^2)}$
maximum speed	$v_{\rm max} = \omega A$
maximum acceleratio	on $a_{\max} = \omega^2 A$

for a mass-spring system $T = 2\pi \sqrt{\frac{m}{k}}$ for a simple pendulum $T = 2\pi \sqrt{\frac{l}{g}}$

THERMAL PHYSICS

energy to change temperature	$Q = mc\Delta\theta$	
energy to change state	Q = ml	
gas law	pV = nRT $pV = NkT$	
kinetic theory model	$pV = \frac{1}{3}Nm (c_{\rm rms})^2$	
kinetic energy of gas molecule	$\frac{1}{2}m(c_{\rm rms})^2 = \frac{3}{2}kT = \frac{3RT}{2N_{\rm A}}$	
GRAVITATIONAL FIELDS		
former le atrus aux trus	C	

force between two masses	$F = \frac{Gm_1m_2}{r^2}$
gravitational field strength	$g = rac{F}{m}$
magnitude of gravitational field strength in a radial field	$g = \frac{GM}{r^2}$
work done	$\Delta W = m\Delta V$
gravitational potential	$V = -\frac{GM}{r}$
	$g = - rac{\Delta V}{\Delta r}$

ELECTRIC FIELDS AND CAPACITORS

force between two point charges	$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1Q_2}{r^2}$
force on a charge	F = EQ
field strength for a uniform field	$E = \frac{V}{d}$
work done	$\Delta W = Q \Delta V$
field strength for a radial field	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
electric potential	$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$
field strength	$E = \frac{\Delta V}{\Delta r}$
capacitance	$C = \frac{Q}{V}$
	$C = \frac{A\varepsilon_0\varepsilon_r}{d}$
capacitor energy stored	$E=\frac{1}{2}QV = \frac{1}{2}CV^2 =$

 $\frac{1}{2} \frac{Q^2}{C}$

capacitor charging	$Q = Q_0(1-\mathrm{e}^{-\frac{t}{RC}})$
decay of charge	$Q = Q_0 e^{-\frac{t}{RC}}$
time constant	RC
MAGNETIC FIELDS	
force on a current	F = BIl
force on a moving charge	F = BQv
magnetic flux	$\boldsymbol{\Phi} = \boldsymbol{B}\boldsymbol{A}$
magnetic flux linkage	$N\Phi = BAN\cos\theta$
magnitude of induced emf	$\varepsilon = N \frac{\Delta \Phi}{\Delta t}$
	$N\Phi = BAN\cos\theta$
emf induced in a rotating coil	$\varepsilon = BAN\omega \sin \omega t$
alternating current	$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$ $V_{\rm rms} = \frac{V_0}{\sqrt{2}}$
transformer equations	$\frac{N_{\rm S}}{N_{\rm p}} = \frac{V_{\rm S}}{V_{\rm p}}$
	$efficiency = \frac{I_{\rm S}V_{\rm S}}{I_{\rm p}V_{\rm p}}$

NUCLEAR PHYSICS

inverse square law $I = \frac{k}{x^2}$ for γ radiation

radioactive decay $\frac{\Delta N}{\Delta t} = -\lambda N, N = N_0 e^{-\lambda t}$ $A = \lambda N$ $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ $R = R_0 A^{1/3}$

energy-mass equation

nuclear radius

activity

half-life

 $E = mc^2$

OPTIONS

ASTROPHYSICS

1 astronomical unit = 1.50×10^{11} m

1 light year = 9.46×10^{15} m

1 parsec = 2.06×10^5 AU = 3.08×10^{16} m = 3.26 ly

Hubble constant, $H = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

M = <u>angle subtended by image at eye</u> angle subtended by object at unaided eye

telescope in normal $M = \frac{f_0}{f_e}$

Rayleigh criterion $\theta \approx \frac{\lambda}{D}$

magnitude equation $m - M = 5 \log \frac{d}{10}$

Wien's law $\lambda_{max} T = 2.9 \times 10^{-3} \text{ m K}$

Stefan's law $P = \sigma A T^4$

Schwarzschild radius $R_{\rm S} \approx \frac{2GM}{c^2}$

Doppler shift for
$$v \ll c$$
 $\frac{\Delta f}{f} = -\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$
red shift $z = -\frac{v}{c}$
Hubble's law $v = Hd$

MEDICAL PHYSICS $P = \frac{1}{f}$ lens equations $m=\frac{v}{v}$ $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ threshold of hearing $I_0 = 1.0 \times 10^{-12} \text{ W m}^{-2}$ intensity level = $10 \log \frac{I}{I_0}$ intensity level absorption $I = I_0 e^{-\mu x}$ $\mu_{\rm m} = \frac{\mu}{\rho}$ ultrasound imaging Z = p c $\frac{I_{\rm r}}{L} = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$ $\frac{1}{T_{\rm E}} = \frac{1}{T_{\rm R}} + \frac{1}{T_{\rm P}}$ half-lives

18

ENGINEERING PHYSICS

moment of inertia	$I = \Sigma m r^2$
angular kinetic energy	$E_{\rm k} = \frac{1}{2} I \omega^2$
equations of angular motion	$\omega_2 = \omega_1 + \alpha t$ $\omega_2^2 = \omega_1^2 + 2\alpha\theta$
	$\theta = \omega_1 t + \frac{\alpha t^2}{2}$
	$\theta = \frac{(\omega_1 + \omega_2) t}{2}$
torque	$T = I \alpha$
	T = F r
angular momentum	angular momentum = $I\omega$
angular impulse	$T \Delta t = \Delta (I \omega)$
work done	$W = T\theta$
power	$P = T\omega$
thermodynamics	$Q = \Delta U + W$
	$W = p\Delta V$
adiabatic change	pV^{γ} = constant
isothermal change	<i>pV</i> = constant

heat engines

efficiency =
$$\frac{W}{Q_{\rm H}} = \frac{Q_{\rm H} - Q_{\rm C}}{Q_{\rm H}}$$

maximum theoretical $\frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$

work done per cycle = area of loop

input power = calorific value × fuel flow rate

indicated power = (area of p - V loop) × (number of cycles per second) × (number of cylinders)

output or brake power $P = T\omega$

friction power = indicated power – brake power

heat pumps and refrigerators

refrigerator:
$$COP_{ref} = \frac{Q_C}{W} = \frac{Q_C}{Q_H - Q_C}$$

heat pump:
$$COP_{hp} = \frac{Q_H}{W} = \frac{Q_H}{Q_H - Q_C}$$

TURNING POINTS IN PHYSICS

electrons in fields

$$F = \frac{eV}{d}$$

$$F = Bev$$

$$r = \frac{mv}{Be}$$

$$\frac{1}{2}mv^{2} = eV$$
Millikan's
experiment

$$\frac{QV}{d} = mg$$

$$F = 6\pi\eta rv$$
Maxwell's formula

$$c = \frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}$$

$$h = h$$

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meV}}$$

special relativity

$$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$$

$$E = m c^2 = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

ELECTRONICS

resonant
frequency $f_0 = \frac{1}{2\pi \sqrt{LC}}$ Q-factor $Q = \frac{f_0}{f_B}$ operational
amplifiers: open
loop $V_{out} = A_{OL} (V_+ - V_-)$

inverting amplifier

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{in}}}$$

non-inverting
amplifier
$$\frac{V_{\text{out}}}{V_{\text{in}}} = 1 + \frac{R_{\text{f}}}{R_{1}}$$

summing
amplifier
$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots \right)$$

difference amplifier
$$V_{out} = (V_+ - V_-) \frac{R_f}{R_1}$$

Bandwidth requirement:

- for AM bandwidth = $2f_{\rm M}$
- for FM bandwidth = $2(\Delta f + f_M)$

END OF FORMULAE

There are no formulae printed on this page

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.

IB/M/Jun17/CD/7408/INS/E5