AQA ${ }^{-}$

Level 3 Certificate Mathematical Studies

1350/1 Paper 1
Final Mark Scheme

1350
June 2017

Version/Stage: v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark orft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Alternative method 1

Median or mean $=30$	B1	
In general the students in this class/they performed better than the national average	E1ft	OE correct comment for their median or mean

1(b)
Alternative method 2
15 out of $24 /$ more than half the
OE eg 62.5% scored more than the students scored more than the national average
national average
or
9 out of 24 / less than half the students scored below the national average

In general the students in this class/they performed better than the

E1ft

OE
correct comment for their proportion/values national average

Additional Guidance

Do not accept 'The median was higher' for the E mark
However 'they got higher marks than the national average/ on average they got higher marks' would score E1

In general students were above the national average

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{2}$	$£ 83$	B1	
\mathbf{Q} Answer Mark Comments			

Alternative method 1			
Package $744 \times 3 \times 0.9 \text { or }(£) 2008.8(0)$	M1	OE	Award M2 for $744 \times 3 \times 0.9 \times 1.03 \text { in any }$ order Award M1 for any 3 of these values multiplied in any order
their ($£$)2008.(..) $\times 1.03$ or ($£$)2069.(..)	M1	OE	
Independent Hotel $\quad 480 \div 1.33 \times 3$ or $360.9(0) \times 3$ or (£)1082.(..)	M1	or $480 \div 1.33+312$ or ($£$) 672.90	
```Total cost Their (£)1082.(..) \(+312 \times 3\) or (£)2018.(..)```	M1	their (£)672.90 $\times 3$	
(£)2069.(..) and (£)2018.(...) and independent is cheaper   or   independent is 50.35 cheaper/over $£ 50$ cheaper	A2	A1 for two values with one correct and correct ft conclusion   or   A1 for both values correct but incorrect or no conclusion	

## Additional Guidance

If there is evidence of multiplying by 3 people at some point then use alt 1 (in pounds) or alt 3 (in euros)
If there is no evidence of multiplying by 3 then use alt 2 (in pounds) or alt 4 (in euros)
Do not swap between alts for a response
Example (using alt 1)
$744 \times 3 \times 0.9 \times 1.03=2069.06$
M2
$480 \div 1.33=360.90$
$360.90+312=672.90$
independent is cheaper
M1 (in comment box)
A1 (one correct value - 2069- and correct ft conclusion)

So although both values are correct on different alts they should have multiplied 672.9 by 3 or divided 2069 by 3 to be consistent so treat as incorrect method   (marking on alt 2 would give the same total of 4 marks -M1M0M1M1A1)
Accept alternative ways of subtracting 10\% and/or adding 3\%
Multiplying by an incorrect percentage can still score one of the first 2 method marks Examples   $744 \times 3 \times 0.1 \times 1.03$ or $229 .(\ldots) \quad$ scores M0M1 ( 3 correct values multiplied)   $744 \times 3 \times 1.1 \times 1.03$ or 2528 . (...) scores MOM1 (3 correct values multiplied)   $744 \times 3 \times 0.9 \times 0.97$ or 1948.(..) scores MOM1 (3 correct values multiplied)   $744 \times 3 \times 0.1 \times 0.97$ scores MOMO   These are only examples.
They must compare using consistent units example   $£ 2069$ and $€ 2685$ and packages $4 u$ are cheaper does not gain the A1 for one value correct and correct ft conclusion. This would gain maximum M2 for either 2069 or 2685


3	Alternative method 2			
	Package per person$\begin{aligned} & 744 \times 0.9 \text { or }(£) 669 .(. .) \\ & \text { their }(£) 669 .(. .) \times 1.03 \text { or }(£) 689 .(. .) \end{aligned}$	M1   M1	OE   OE	Award M2 for $744 \times 0.9 \times 1.03$   in any order   Award M1 for any 2 of these values multiplied in any order
	Independent per person   Hotel $480 \div 1.33$ or ( $£$ )360.(9..)	M1		
	Their (£)360.(9..) + 312 or 672.(..)	M1		
	(£)689.(...) and (£)672.(...) and independent is cheaper per person or independent is $(£) 17$ cheaper per person   or   total cost is ( $£$ ) 51 cheaper for independent	A2	A1 for two values with one correct and correct ft conclusion   or   A1 for both values correct but incorrect or no conclusion	
	Additional Guidance			


	Accept alternative ways of subtracting 10\% and/or adding 3\%	
	Multiplying by an incorrect percentage can still score one of the first 2 method marks   Examples   $744 \times 0.1 \times 1.03$ or 76 .(...) scores M0M1 ( 2 correct values multiplied)   $744 \times 1.1 \times 1.03$ or 842 .(...) scores M0M1 ( 2 correct values multiplied)   $744 \times 0.9 \times 0.97$ or 649 .(..) scores MOM1 (2 correct values multiplied)   $744 \times 0.1 \times 0.97$ scores MOMO   These are only examples.	
	They must compare using consistent units	


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


3	Alternative method 3					
	Package$\begin{aligned} & 744 \times 1.33 \times 0.9 \text { or }(€) 890.5(. .) \\ & \hline \text { their }(€) 890.56 \times 1.03 \times 3 \text { or }(€) 2751 .(. .) \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	OE   OE	Award M2 for $744 \times 1.33 \times 0.9 \times 1.03 \times 3$   in any order   Award M1 for any 3 of these values multiplied in any order	
	Independent   Hotel $312 \times 1.33 \times 3$ or $(€) 1244.88$		M1	or $312 \times 1.33+480$ or ( $€$ ) 894.96		
	Total cost   Their $(€) 1244.88+480 \times 3$   or ( $€$ )2684.(88)		M1	their ( $€$ ) $894.96 \times 3$		
	(€)2751.(...) and €2684.(88) and independent is cheaper		A2	Deduct one mark if $€$ signs are missing from their answer   A1 for two values with one correct and correct ft conclusion or   A1 for both values correct but incorrect or no conclusion		
	Additional Guidance					
	Accept alternative ways of subtracting 10\% and/or adding 3\%					
	Multiplying by an incorrect percentage can still score one of the first 2 method					

marks
Examples
$744 \times 1.33 \times 0.1 \times 1.03 \times 3$ or 305 .(..) scores M0M1 (at least 3 correct values multiplied)
$744 \times 1.33 \times 0.1 \times 1.03$ or 101.(...) scores MOM1 (3 correct values multiplied)
These are only examples.

3	Alternative method 4				
	Package $744 \times 1.33 \times 0.9 \text { or }(€) 890.5(. .)$	M1	OE	Award M2 for $744 \times 1.33 \times 0.9 \times 1.03$   in any order   Award M1 for any 3 of these values multiplied in any order	
	their $(€) 890.56 \times 1.03$ or ( $€$ )917.(..)	M1	OE		
	Independent   Flight $312 \times 1.33$ or $(€) 414$.(..) or 415	M1			
	Total cost   Their (€)414.(..) +480   or ( $€$ )894.(..) or ( $($ ) 895	M1			
	( $€$ ) 917.(...) and ( $€$ )894.(..) and independent is cheaper	A2	A1 for two values with one correct and correct ft conclusion or   A1 for both values correct but incorrect or no conclusion		
	Additional Guidance				
	Accept alternative ways of subtracting 10\% and/or adding 3\%				
	Multiplying by an incorrect percentage can still score one of the first 2 method marks   Examples   $744 \times 1.33 \times 0.1 \times 1.03$ or $98 .(\ldots) \quad$ scores M0M1 (at least 3 correct values multiplied)   $744 \times 1.33 \times 0.9 \times 0.97$ or 863 .(...) scores MOM1 (3 correct values multiplied)   These are only examples.				

$\square$

Q	Answer	Mark	Comments



	they could use households to estimate population eg small town 2000 houses   $\times 4$ people $=8000$ population	
	If working in ml they can still gain the method mark but they must convert to   litres for the accuracy mark	The three values may be multiplied in 2 steps   eg litres per day $\times$ days in month at one point in their working,   then this answer $\times$ number of people
If they just state a number of litres per month eg 65 litres per month they do not   score the marks for assumptions but can score M1 and A1 for multiplying this   correctly by their population		
Allow rounding at any point   eg   uses 7 litres and 31 days in a month, $7 \times 31=217$ and rounds to 200 or 220		
	Final answer must be an integer	


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


$\mathbf{5 ( a )}$	Collect prices from estate   agents/websites for house prices/   recent house sales/newspapers   and   across different areas of London	E2	E1 Partial explanation (only one of the   comments)
	Additional Guidance		
	For different area allow different suburbs/estates/streets		


5(b)	(No,) London prices may not be representative of the whole country or   London prices are likely to be higher/different than some other parts of the country	B1	
	Additional Guidance		
	No may be implied eg It would not be sensible		
	Ignore other non-contradictory comments eg sample size too small		
	Its London/it's the capital		B0


5(c)	Alternative method 1		
		B1	condone 000's added eg 158000
	$\begin{aligned} & 180000 \div \text { their }[157,165] \\ & \text { or } \\ & {[1090,1147]} \end{aligned}$	M1	$180000 \times \frac{\text { their }[188,192]}{\text { their }[157,165]} \text { implies M2 }$
	their [1090,1147] $\times$ their [188,192]	M1	
	(£) [204 900,220 200]	A1ft	ft their values for 2009 and 2014 Answer must be to nearest $£ 100$
	Alternative method 2		
	2009 157 to 165   and    2014 188 to 192	B1	condone 000's added eg 158000
	$\begin{aligned} & \frac{\text { their }[188,192]-\text { their }[157,165]}{\text { their }[157,165]} \\ & \times 100) \\ & \text { or }[13.9,22.3] \\ & \text { or }[0.139,0223] \end{aligned}$	M1	
	their [0.139,0223] $\times 180000$	M1	
	(£) [204900,220 200]	A1ft	ft their values for 2009 and 2014 Answer must be to nearest $£ 100$


Q	Answer	Mark	Comments	
6(a)	$=\mathrm{B} 2^{*}(1.14 / 100)$	B 1		
	Additional Guidance			


	Fully correct			B1 for one error with correct ft calculations	
6(b)	Additional Guidance				
		A	B	C	D
	1		Starting amount (£)	Interest (£)	Final amount $(£)$
	2	First 3 months	2800.00	31.92	2831.92
	3	Second 3 months	2831.92	32.28	2864.20
	4	Third 3 months	2864.20	32.65	2896.85
	5	Fourth 3 months	2896.85	33.02	2929.87

Note these figures are worked out on rounding to 2 dp each year
If more dp are used in calculations then D4 may be 2896.86 and D5 would be 2929.88 so 2929.87 or 2929.88 in cell D5 scores B2

Q	Answer	Mark	Comments


6(c)	Alternative method 1		
	$4 \times 1.14$ or 4.56 (\%) or 0.0456	M1	$(1+0.0114)^{4}-1$ gains M2
	$\begin{aligned} & \left(1+\frac{\text { their } 0.0456}{4}\right)^{4}-1 \\ & \text { or } 0.04638(\ldots) \end{aligned}$	M1	
	$\begin{aligned} & 4.638(\ldots) \\ & 4.64 \end{aligned}$	A1	
	Alternative method 2		
	their 2929.87-2800 or 129.87	M1	ft their 2929.87 from part (b)
	$\frac{\text { their } 129.87}{2800} \times 100$	M1	
	$\begin{aligned} & 4.638(\ldots) \\ & 4.64 \end{aligned}$	A1ft	ft their total interest from part (b)
	Alternative method 3		
	$\frac{\text { their } 2929.87}{2800} \times 100$ or 104.64	M1	ft their 2929.87 from part (b)
	their 104.64.. - 100	M1	
	$\begin{aligned} & 4.63(\ldots) \\ & 4.64 \end{aligned}$	A1	ft their total interest from part (b)
	Additional Guidance		
	Alt 1 uses the AER formula from the formula sheet		
	Note $\left(1+\frac{0.0114}{4}\right)^{4}-1 \quad$ is a common incorrect substitution. Scores MOM1A0		
	For Alt 2 and Alt 3 If their 2929.87 is a different value the check to see it matches their final value in the spreadsheet (use full screen view)		
	Beware the use of 3 instead of 4 for the months   This leads to $\left(1+\frac{0.0456}{3}\right)^{3}-1=0.04629$ or 4.63   scores M1M0		


Q	Answer	Mark	Comments


7(a)	Alternative method 1		
	Histogram chosen	B1	vertical scale labelled frequency density implies density   unequal bar widths implies histogram unless values are cumulative
	Both axes scales appropriate with correct labelling	B1	Vertical scale must be labelled frequency density (or fd) not just frequency   Horizontal scale minimum label is sugar, $g$
	Fully correct histogram   $0-40$ height 0.3   40-60 height 0.9   60-70 height 2.3   70-80 height 2.7   80-120 height 0.5	B2	B1 At least 3 bars correct or at least 3 correct frequency densities seen Heights $\pm 1 / 2$ square   Check table for frequency densities
	Additional Guidance		
	if a bar goes above the graph paper (eg used 5 cm to 1 ) penalise B 1 for an inappropriate scale but allow heights for final B marks		


7(a)	Alternative method 2			
	Cumulative frequency graph chosen		B1	cf scale or heights plotted at cf values implies cf graph
	Both axes scales appropriate with correct labelling		B1	Vertical axis must be cumulative frequency (or cf) not just frequency   Horizontal scale minimum label is sugar, g horizontal axis must start from 0 (no broken axis)
	Fully correct cumulative frequency graph joined with lines or smooth curve		B2	$\pm 1 / 2$ square   B1 All heights correct and joined with line/curve but plotted at incorrect horizontal position   or   Plotted at upper class values and joined with line or curve with at least 3 heights correct   or   All points correct but no line/ curve or poor line/curve
	less than 40	12		
	less than 60	30		
	less than 70	53		
	less than 80	80		
	less than 120	100		
	Additional Guidance			
	Can be joined to (0,0)			
	If heights are incorrect check if they have shown their cf values and follow through 1 error eg they show their cf values as $12,20,43,70,90$ and then plot these values accurately award B1 of the final B2   Just seeing the cf values does not gain the first B1 -they must attempt the graph!   Some are working out cf values and plotting at these heights but as cf 'bars' not single points eg a sort of 'cumulative frequency histogram'   Award B1 for choosing cf graph and B1 if scales are appropriate and labelled correctly			
	Deduct 1 mark if end of curve drops down.			
	The tolerance of $1 / 2 \mathrm{sq}$ applies to horizontal position, heights and the curve/line going through the points.			
	A 'poor' curve is 'feathered' and/or misses the points by more than $1 / 2$ square			


7(a)   cont	Alternative method 3			
	Frequency polygon chosen	B1		
	Both axes scales appropriate with correct labelling	B1	vertical scale must be frequency   Horizontal scale minimum label is sugar, g	
	Fully correct frequency polygon plotted at mid class intervals, with all heights correct and joined with straight lines	B2	$\pm 1 / 2$ square   B1 All heights correct and joined with straight lines but plotted at incorrect horizontal position or   Plotted at mid-class values with 3 or 4 heights correct, and joined   Ignore lines before first point and after last point   or   All points correct but no line or poor line	
	Additional Guidance			
	In Alt 2, the points can be joined by straight lines or a smooth curve Lines must be 'straight' not curved or 'wiggly'.			
	Non-linear scale on the horizontal axis loses the 2nd B1 but can access the last two B marks for plotting at their correct positions			
	The tolerance of $1 / 2 \mathrm{sq}$ applies to horizontal position, heights and the line going through the points.			


$\mathbf{Q}$	Answer	Mark	Comments


Alternative method 1 - working out number above 30 g		
(Before =) 91	B1	
$10 \times 1.6 \text { or } 16$   or $20 \times 2.8 \text { or } 56$   or $40 \times 0.1 \text { or } 4$   or $20 \times 0.4 \text { or } 8$	M1	These can be written on the bars of the histogram   Ignore any units
(After =) 76	A1	
Yes, the number/percentage of children consuming more than the recommended amount had decreased (by 15(\%))   or   Yes it was 91(\%) before and now it's only 76(\%)	B1ft	ft their values if M 1 awarded and a value seen for both before and after

Alternative method 2 - working out number below 30 g

(Before $=$ ) 9	B1		
$20 \times 0.4$ or 8   or   $10 \times 1.6$ or 16	M1	Ignore any units	
(After $=$ ) 24	A1		
Yes, the number/percentage of   children consuming below the   recommended amount had increased   (by 15(\%))	B1ft	ft their values if M1 awarded and a value   seen for both before and after	
Additional Guidance			
check histogram for values			


$\mathbf{Q}$	Answer	Mark	Comments

## Alternative method 1

$40 \times 50$ p   or $40 \times 0.5$   or $40 \times 7.2(0)-40 \times 6.7(0)$   or $288-268$   or $(£) 20$	M1	extra gross pay per week
their $20 \times 0.2$ or $(£) 4$	M1	OE extra tax paid per week
their $20 \times 0.12$ or $(£) 2.40$	M1	OE extra N.I paid per week
their $20-($ their $4+$ their 2.40$)$ or   $13.6(0)$	M1	
their $13.6(0) \div 40$   or 0.34	M1	or $35 \times 40$ or $1400(p)$ or $(£) 14$
$£ 0.34$ or $34(p)$ and Yes   or   13.60 and 14 and Yes	A1	If leave 34 p in pounds must show $£$ sign

## Alternative method 2

$7.2(0)-6.7(0)$ or $50(\mathrm{p})$	M 1	extra gross pay per hour
their $50 \times 0.2$ or $10(\mathrm{p})$	M 1	OE extra tax paid per hour
their $50 \times 0.12$ or $6(\mathrm{p})$	M1	OE extra NI paid per hour
their $10+$ their 6 or 16	M1	
$50-$ their 16	M1	
34 p and Yes	A1	




Q	Answer	Mark	Comments


| $\mathbf{y y y}$ | 15.8(4) |  | B1 for $\sum f x=792$ seen <br> SC1 15.59 or 15.6 or 16.09 or 16.1 (using <br> lower or upper class boundaries) |
| :--- | :--- | :--- | :--- | :--- |
|  | Additional Guidance |  |  |


9(b)	The answer is within the range of the data/ close to the intervals with the highest frequencies/in/near the modal class   or   work out the median and check its similar/compare with the mean	B1	OE
	Additional Guidance		


9(c)	$\begin{aligned} & 0.6759(\ldots) \text { or } 0.676 \\ & \text { or } 0.6828(\ldots) \text { or } 0.683 \\ & \text { or } 0.68 \end{aligned}$	B2	B1 for $\sum f x^{2}=12568.125$	
	Additional Guidance			
	If correct sd is seen then ignore any attempt to change to minutes and seconds But penalise by one mark any invalid further working after correct sd seen example$\begin{aligned} & s d=0.68 \\ & 0.68 \times 50=34 \end{aligned}$			B1


9(d)	Correct evaluation of difference between the mean before and after training	B1ft	ft their (a) and (c)   1.6(4) if their 9a is correct	
	Correct comparison in context about the means   eg after training he was faster/ he's swimming quicker/his times have decreased	B1 ft	ft their (a) and (c)	
	Correct comparison of sd's in context eg he is now more consistent/ his times are less varied	B1ft	ft their (a) and (c)	
	Additional Guidance			
	If there are no values for their part a and/or $c$ then they must state the mean and/sd they are using			
	eg He decreased his average time by 1.6(4) minutes and his times were minutes more consistent			B3
	eg He decreased his average time by 1.6(4) minutes			B2
	eg After coaching he was faster and more consistent			B2
	He was faster after training			B1
	After training he had a lower mean time			B0
	After training his mean was lower by about 1.6 seconds and he was more consistent			B1B0B1


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |




10(a)   cont	Alternative method 2 -works on full occupancy first			
	Room with double bed costs ( $£$ ) 5.40 or ( $£$ ) 6.40	B1	2 pillowcases or 4 pillowcases used implied by totals of a particular number of rooms   eg ( $£$ ) 135 is 25 rooms at ( $£$ )5.40	
	Room with 2 single beds costs ( $£$ ) 7.60 or ( $£$ ) 8.60   or room with one single bed used costs   ( $£$ ) 3.8(0) or ( $£$ )4.3(0)	B1	2 pillowcases or 4 pillowcases used implied by totals of a particular number of rooms   eg ( $£$ ) 134.40 is 8 rooms at $(£) 4.30$	
	$25 \times$ their $5.40+10 \times$ their 7.60	M1	finds total cost of laundry for one change	
	Makes assumption about average number of sheet changes per room eg 4 times a week 20 times per month guests stay on average 4 days so about 7 times per month	B1	Accept $2-6$ changes per week   or   6 - 26 changes per month   Must be changes -not number of nights stayed	
	Works out total cost of sheet changes per month for all rooms eg their total cost per change $\times$ their 4 per week $\times 4$ weeks   eg their total cost per change $\times$ their 20 times	M1	Answers may be rounded eg to nearest 10	
	Occupancy rate of $70 \%$ to $85 \%$ used	B1		
	Their cost per month $\times$ their occupancy rate	M1	their cost per month must include multiplication by the number of sheet changes	
	Correct answer for their calculations (may be rounded)	A1	Answers must be rounded to the nearest pound	
	Additional Guidance			
	Accept sensible rounding for any stage of their calculations eg estimates on average bed linen for double room is $£ 6$ per set			
	Answers may follow part of each alt eg works out occupancy rate first then finds cost of laundry for all rooms per night			


Q	Answer	Mark	Comments



