Level 3 Certificate Mathematical Studies

1350/2A - Paper 2A - Statistical techniques

Mark scheme

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Q	Answer	Mark	Comments	
$\mathbf{1 a}$	71.5	B1		
	Additional Guidance			

Q	Answer	Mark	Comments
1b	Graph 1: EU immigration in the UK Identify ' m ' as millions or state what ' m ' means Reposition 'm' Use grid/graph paper to enable more accurate readings Extend the all curves to 2045/ same point Add a broken axis Add a line for high net migration The starting point for each line should be the same Graph 2: Brexit's impact on the pound Use a key Indicate what 'NIESR' or 'OECD' stands for Use lines/points rather than bars Switch or remove the higher and lower labels Add more organisations Add space between each column Add (horizontal) grid lines Make it clear which currency they are comparing with	E4	E1 for each valid improvement with a maximum of E2 for each graph Ignore any additional but incorrect suggestions Not label the axes Not make lines distinct from each other Not define 'high' or 'low' Not make a bar chart SC1 (two errors identified but no suggestions for improvement) SC2 (three errors identified but no suggestions for improvement) eg. Don't know what ' m ' stands for, line not extended to 2045 etc
	Additional Guidance		

Q	Answer	Mark	Comments
1 c	Alternative method 1		
	$14600000000 \div 52$ or $1.46 \times 10^{10} \div 52$ or $14.6 \div 52$ or [280 000 000, 281000 000]	M1	oe
	[280 000 000, 281000 000] and No	A1	oe SC1 $14600000000 \div 48=304$ million and No
	Alternative method 2		
	$\begin{aligned} & 350000000 \times 52 \\ & \text { or } \\ & 3.5 \times 10^{8} \times 52 \\ & \text { or } \\ & {[18000000000,18300000000]} \end{aligned}$	M1	oe
	[18 000000 000, 18300000000] and No	A1	oe SC1 $350000000 \times 48=16.8$ billion and No
	Alternative method 3		
	14.6 billion $\div 350$ million	M1	
	41.7 weeks and No or 41.7 and 52 and No	A1	
	Additional Guidance		
	For use of [48, 52) use SC1 rule		
	Use of $365 \div 7$ or $365.25 \div 7$ in place of 52 is correct		
	Allow use of words such as million/billion or standard form rather than full ordinary figures		
	'Exaggeration' implies No		
	For final answer, allow self-correction		

Q	Answer	Mark	Comments
1d	Tim Alternative method 1		
	$(46500001-33577342) \div 46500001$ or $12922659 \div 46500001$ or 0.278 or $33577342 \div 46500001 \text { or } 0.72$	M1	oe Condone interchange of 33577342 with accept [0.26, 0.285] or [27, 28]\% accept $[0.715,0.74]$ or $[71.5,74] \%$
	0.278 or $27.8(\%)$ and No or 72 and 80 and No	A1	accept $[0.27,0.28]$ or $[27,28] \%$ accept $[71.5,74] \%$
	Tim Alternative method 2		
	0.2×46500001 or 9300000 and 46500001 - 33577342	M1	accept [9 200 000, 9400 000] accept [46 000 000, 13000 000] Condone interchange of 33577342 with 33551983
	9300000 and 12922659 and No	A1	
	Kelly Alternative method 1		
	```\(16141241 \div 12\) or 1345103 and \(17410742 \div 1345103\) or \(12.9(\ldots)\)```	M1	allow reverse order
	12.9(...) and Yes or 12.0(...) and Yes	A1	
	Kelly   Alternative method 2		
	```16141241\div17410742 or [0.925,0.928] or 12\div13 or 0.923```	M1	allow reverse order
	[$0.925,0.928$] and 0.923 and Yes	A1	

Kelly
 Alternative method 3

\(\left.\begin{array}{|l|c|l|}\hline 33551983 \div 25 \times 12 or 16104951 .(84) \& M1 \& Condone interchange of 33577342 with

or

or

33551951983\end{array}\right]\)\begin{tabular}{l}

\hline 16104951 and 17447031 and Yes

\hline | Kelly |
| :--- |
| Alternative method 4 |

\hline
\end{tabular}

$12 \div 25$ or 0.48 or $13 \div 25$ or 0.52	M1	oe
0.48 and 0.52 and Yes	A1	oe

Kelly

Alternative method 5

$16141241 \div 12$ or 1345103 and $17410742 \div 13$ or 1339288		M1	
1345103 and 1339288 and Yes		A1	
Larissa			
$2000000+16141241$ or 18141241or$2000000+33577342$ or 35577342or$2000000+33551983$ or 35551983		M1	Condone interchange of 33577342 with 33551983
$\begin{aligned} & 18141241 \div \\ & 35577342(\times 100) \end{aligned}$	$\begin{aligned} & 18141241 \div \\ & 35551983(\times 100) \end{aligned}$	M1	oe Condone interchange of 33577342 with 33551983
0.509(...) or 0.51 and No (from using 35577 342)	$\begin{aligned} & 0.5102(\ldots) \text { or } \\ & 0.5103 \text { and Yes } \\ & \text { (from using } \\ & 35551 \text { 983) } \end{aligned}$	A1	oe A1 for the correct answer and statement SC1 for 54.(...)\%

Additional Guidance

Be careful not all possible alternatives are shown for this question.
Any fully correct method gains full marks.
Condone interchange of 33577342 with 33551983

Q	Answer	Mark	Comments
2	Alternative method 1 - Euros		
	$1.08 \div 0.9$ or 1.2	M1	
	$17000 \times$ their 1.2 or 20400	M1	Allow 1.08 or 1.188 or 1.19 in place of 1.2 to obtain 18360 or 20196 or 20230
	253000×1.125 or 284625	M1	oe
	their 284625×1.08 or 307395	M1	oe
	their $20400+307395$ or 20400 + their 307395 or 327795	M1	
	327795 and Yes	A1	SC4 for 325755 or 327591 or 327625
	Alternative method 2- Pounds		
	$1.08 \div 0.9$ or 1.2	M1	
	$17000 \times$ their 1.2 or 20400	M1	Allow 1.08 or 1.188 or 1.19 in place of 1.2 to obtain 18360 or 20196 or 20230
	253000×1.125 or 284625	M1	oe
	their $20400 \div 1.08$ or 18888 .(89) or $327500 \div 1.08$ or 303240. (74)	M1	oe
	$\begin{aligned} & \text { their } 18888 .(89)+284625 \\ & \text { or } \\ & 18888 .(89)+\text { their } 284625 \\ & \text { or } \\ & 303513 .(89) \end{aligned}$	M1	
	```303 513.(89) and 303 240.(74) and Yes```	A1	$\begin{gathered} \text { SC4 for } 301625 \text { or } 303325 \text { or } \\ 303356 .(4815) \end{gathered}$
	Additional Guidance		
	Alternative 2: Method of $17000 \div 0.9(=18888.89)$ scores the $1^{\text {st }} \mathrm{M} 1,2^{\text {nd }} \mathrm{M} 1$ and $4^{\text {th }} \mathrm{M} 1$		


Q	Answer	Mark	Comments
3a	1.379	B1	


Q	Answer					Mark	Comments
3b	PMCC	0.619	0.970	-0.0153	-0.608		B1 for two diagrams correctly matched
	Diagram	D	A	C	B		
	Additional Guidance						


Q	Answer	Mark	
3c	No   and   increase of wind speed causes the   speed of the blades of the windmill to   increase   or   the speed of the blades of a windmill   is dependent on the wind speed   or   should be the other way round	B1	oe


Q	Answer	Mark	Comments
$\mathbf{4 a}$	Plots the points $(20,27)$ and $(30,23)$	B1	$\pm 1 / 2$ small square


Q	Answer	Mark	Comments
$\mathbf{4 b}$ (i)	$(10,21)$ and $(25,38)$	B1	
	Outliers or values outside   pattern/regression line or anomalies	E1	


Q	Answer	Mark	Comments
$\mathbf{4 b}$ (ii)	$J=36-0.39 T$ or $y=36-0.39 x$		ft their $(10,21)$ and their $(25,38)$   allow use of $x$ and $y$   allow 36.0( $\ldots)$   allow $0.3907 \ldots$ or 0.391 not -0.4   B1ft if 36 or -0.39 seen   Do not allow $J=36+-0.39 T$   SC1 for $J=34 .(\ldots)-0.3(09 \ldots) T$   SC1 for $J=34 .(\ldots)-0.31 T$


Q	Answer	Mark	Comments
4b(iii)	Correct line drawn from $T=0 \text { to } T=45$	B2ft	ft their equation $\pm 1 / 2$ small square B1 one correct point identified or plotted correct points are $\begin{aligned} & (10,32.1),(20,28.2),(30,24.3), \\ & (40,20.4),(45,18.5) \end{aligned}$
	Additional Guidance		
	Any line that goes through $(0,36)$ and $(24,27)$ scores B2 but has to go from $x=0$ until $x=45$ and allow $\pm 1 / 2$ small square		
	ft and work out the regression equation depending on which 2 points are ignored.		
	If no regression equation stated in part 4bii, then part 4biii scores B0 unless a fully correct regression line is drawn, then 4biii scores B2		


Q	Answer	Mark	Comments
4 c	Alternative method 1		
	$T+J=60$	M1	oe   can be implied from line of $T+J=60$
	Line of $T+J=60$ drawn and intersects with their regression line	M1	
	39.(...)	A1ft	ft their value of $T$ found from the point intersection
	8.09am	A1ft	ft their 39.(...)
	Alternative method 2		
	$T+J=60$	M1	oe   can be implied from $T+36-0.39 T=60$ allow use of $x$ and $y$ eg $x+y=60$
	$T+36-0.39 T=60$   or $0.61 T+36=60$   or $0.61 T=24$	M1	
	39.(....)	A1ft	ft their $J=36-0.39 T$
	8.09am	A1ft	ft their 39.(...)
	Alternative method 3		
	Values of $T$ and $J$ worked out from their regression line/equation leading to an arrival time that is not 8.30	M1	can be implied
	Values of $T$ and $J$ worked out from their regression line/equation leading to an arrival time closer to between 8.25 and 8.35	M1	Must state arrival or leaving time
	Values of $T$ and $J$ worked out from their regression line/equation leading to an arrival time between 8.28 to 8.32	A1ft	Must state arrival or leaving time
	8.09am	A1ft	ft their regression line or equation
	Additional Guidance		
	Accept an algebraic method if used -see alt2		
	Answer of 8.09 with no contradiction scores full marks.		


Q	Answer	Mark	Comments
5a	95\% value $\rightarrow 1.96$ seen	B1	1.96 can be implied in C.I calculation
	$\begin{aligned} & (210+301+312+\ldots+245) \div 18 \\ & \text { or } 4551 \div 18 \text { or } 252.8(\ldots) \end{aligned}$	M1	Calculate mean   Allow one error/omission
	```their 252.8(...)\pm their 1.96 \times \sqrt{}{}1750\div V18 or their 252.8(..) \pm their 1.96 > 9.86(...) or their 252.8(...) \pm19.3(...)```	M2	M2 for correct equation using their value of $1.96$   M1 for one error in the equation
	([233.4, 233.6], [272.0, 272.2])	A1ft	ft their 1.96 providing all other values in the equation are correct allow reverse order eg: ([272.0, 272.2], [233.4, 233.6],)
	Additional Guidance		
	If candidates use 18 or 1750 instead of $\sqrt{ } 18$ or $\sqrt{ } 1750$ can score B 1 M 1 M 1 A0. However, if both 18 and 1750 used instead of $\sqrt{ } 18$ and $\sqrt{ } 1750$ can score B1 M1 M0 A0		
	The omission of either + or - in the equation counts as one error instead of \pm		
	Premature rounding or truncating (eg $\sqrt{ } 18=4$) leading to an inaccurate answer only gain method marks		
	If their 95% value is $1.69(54)$ leading $(236.17,269.49)$ scores B0M1M2A1ft		
	ISW rounding		
	If ([233.4, 233.6], [272.0, 272.2]) seen without method or contradiction score full marks		

Q	Answer		Mark	Comments
5b	250 is within their 95\% confidence interval	250 is not within their 95\% confidence interval	B1	ft their stated 95\% confidence interval
	Yes or correct	No or wrong	E1	ft their stated 95\% confidence interval
	Additional Guidance			
	If they didn't write a confidence interval in part 5a, then part 5b scores 0			

Q	Answer	Mark	Comments
6a	$(5-5.6) \div 1.3$ or $0.46(\ldots)$	M1	Standardising to $\mathrm{N}(0,1)$ Condone (5.6-5) or 0.46(...) Allow 1.30(...) for σ
	$\begin{aligned} & {[0.677,0.68]} \\ & \text { or } \\ & 1-[0.677,0.68] \end{aligned}$	M1	Correct value of $\mathrm{P}(z>$ their $-0.46(\ldots))$ or Correct value of $\mathrm{P}(z<$ their $-0.46(\ldots))$ Can be implied with values on diagram
	[0.32, 0.323]	A1	oe allow 0.3 if method seen
	Additional Guidance		
	If candidates use 1.69 inst	score	$0 \mathrm{M1}$ A0
	If $0.677(\ldots)$ seen, scores M		
	If [0.32, 0.323] without me	diction	ore full marks

Q	Answer	Mark	Comments
6b	$\begin{aligned} & 0.9 \times 5.6 \text { or } 5.04 \\ & \text { or } \\ & 1.1 \times 5.6 \text { or } 6.16 \end{aligned}$	M1	Implied by further values
	(their $5.04-5.6$) $\div 1.3$ or -0.43(...) or (their $6.16-5.6) \div 1.3$ or $0.43(\ldots)$	M1	Condone (5.6-5.04) or (5.6-6.16) Allow 1.30(...) for σ
	$\begin{array}{\|l} \hline 0.33(\ldots) \\ \text { or } \\ {[0.666,0.67]} \end{array}$	M1	Correct value of ($\mathrm{P}(z<$ their $-0.43(\ldots))$ or $\mathrm{P}(z>$ their $0.43(\ldots))$ or Correct value of $(\mathrm{P}(z>$ their $-0.43(\ldots))$ or $\mathrm{P}(z<$ their $0.43(\ldots))$ ft their $\pm 0.43(\ldots)$
	Must see $1-2 \times 0.33(\ldots)$ leading to $0.33(\ldots)$ or $2 \times([0.666,0.67]-0.5)$ leading to 0.33(...)	A1	oe or better with correct method
	Additional Guidance		
	If candidates use 1.69 instead of 1.3 can score M1 M0 M1 A0		
	If $0.33(\ldots)$ seen without any method scores 0		
	Be careful that 1-0.6664 could lead to $0.33(\ldots)$ but this scores no accuracy mark		

Q	Answer	Mark	Comments
$\mathbf{6 c}$	$(-) 0.67(45)$	B1	
	Their $(-) 0.67(45)=(T-5.6) \div 1.3$	M1	oe Correct equation using any letter
	$4.7(\ldots)($ mmol/l)	A1	cao has be at least 2 decimal places
	Additional Guidance	If candidates use 1.69 instead of 1.3 can score B1 M0 A0	
	ISW rounding		
	If 4.7(...) seen without method or contradiction score full marks		

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{6 d}(\mathbf{i})$	(Sample mean $=) 5.01$	B1	

Q	Answer	Mark	Comments
$\mathbf{6 d (i i) ~}$	Increasing the sample size or accept similar explanation	E 1	
	Additional Guidance		

Q	Answer	Mark	Comments
7a	Each member/All members of the population has an equal chance/probability of being chosen or Sample without bias	B1	

Q	Answer	Mark	Comments
7b	allocates a number between 01-25 or $00-24$ or within a range of 25 to each teacher or states that a (different) number to each teacher should be allocated	B1	oe Not a random number from the table given Can be implied on the table of list of teachers eg Ms Hobbs $\rightarrow(0) 1$ Mr Burns $\rightarrow(0) 2$ Mr Chan $\rightarrow(0) 3$
	converts the 5-digit random number to a 2-digit number using a consistent method or states a method to convert a 5-digit number to 2-gigit number	B1	$\text { eg } \begin{aligned} 13962 & \rightarrow 13 \text { or } 62 \\ 70992 & \rightarrow 70 \text { or } 92 \\ 65172 & \rightarrow 65 \text { or } 72 \\ 28053 & \rightarrow 28 \text { or } 53 \\ 02190 & \rightarrow 02 \text { or } 90 \end{aligned}$
	(rejects their 2-digits >25 and) selects their 2-digits <25 or states reject 2-digit numbers for	B1	eg rejects $70,65,28, \ldots$ chooses 13, (0)2, etc
	matches their 2-digits to at least two teachers using valid method	B1	eg chooses Ms Jaleel and Mr Burns
	Set of names generated by their valid method	B1	dep on a valid method used
	Additional Guidance		
	The first three B1B1B1 can be scored for describing a correct method and the last B1B1 can be scored for exemplifying the correct method and selecting a correct list of 5 teachers		
	eg 1 Teachers numbered sequentially row by row and first two digits of 5-digit random numbers used and selected row by row Ms Jaleel, Mr Burns, Ms Amat, Mr Davies and Mr Chan eg 2 Teachers numbered sequentially column by column and last two digits of 5-digit random numbers used and selected row by row Ms Gibson, Ms Carr, Mr Lunn, Mr Burns and Mr Singh		

