AQA

Level 3 Certificate

 Mathematical Studies1350/2B Critical Path and Risk Analysis
Final Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Q	Answer	Mark	Comments
1(b)	Alternative method 1 $37.49 \times 24 \text { or } 899 .(\ldots)$ or $37.49 \times 0.7 \text { or } 26 .(\ldots)$	M1	
	```their 899.(..)\times 0.7 or 629.(...) or their 26.(..)\times 24 or 629.(...) or 629.(...)```	M1	
	their 629.(...)+109.99 or 739.(...)	M1	
	$739.82 \text { and No }$   or 739.75 and No	A1	AWRT 739.8   Condone 739.8


	Alternative method 2   $37.49 \times 24$ or $899 .(\ldots)$   or   $37.49 \times 0.7$ or $26 .(\ldots)$	M1	
	1(b)   their $899 .(\ldots) \times 0.7$ or $629 .(\ldots)$   or   their $26 .(\ldots) \times 24$ or $629 .(\ldots)$   or   $629 .(\ldots)$	M1	
$700-$ their $629 .(\ldots)$   or   $70 .(\ldots)$ and compares with 109.99	M1		
	70.(.... $<109.99$ and No		


1(b)	Alternative method 3 $700-109.99 \text { or } 590.01$	M1	
	$37.49 \times 0.7$ or $26 .(\ldots)$	M1	
	```their 590.01 % their 26.(...) or 22.(..) or their 590.01 \div24 or 24.(...)```	M1	
	22.5 and No or 26.24 and 24.58 and No	A1	
	Additional Guidance		

Q	Answer	Mark	Comments
2(a)	80000	B1	

2(b)	Always Young		
	$\frac{16.9-13.7}{16.9}(\times 100 \%)$ or $\frac{13.7}{16.9}(\times 100 \%)$ and compares with 100% or $\frac{4}{5} \times 16.9$	M1	oE SC2 for $\frac{1}{5} \times 764000=152800 \neq 136000$ or $764000-152800=611200 \neq 628000$ or $\frac{136000}{764000}(\times 100 \%)=17.8 \%$ or $\frac{628000}{764000}(\times 100 \%)=82.2 \%$ and Always Young is wrong/the statement is incorrect/it isn't quite one-fifth/ could be true it's nearly one-fifth
	[18.9,19] \% or 13.5(...) and 13.7 seen	A1	
	Always Young is wrong or the statement/headline is incorrect or it isn't quite one-fifth or could be true it's nearly one-fifth	E1	E1 one correct statement/agreement OE
	Dynamic Youth		
	Working out the total number men 16-24 or women aged 16-24 Men: $362000 \div 0.152$ or Women: $265000 \div 0.121$	M1	This can be implied in the correct number of men/women aged 16-24 given below

	Any value within range [2 380 000, 2400 000]	A1		
	Any value within range [2 100 000, 2200 000]	A1		
	Putting their values as a ratio with attempts to simplify it (i.e 1.09:1 etc) or comparing it to $11: 10$	A1		
	Ratio of 1.09:1 calculated and Dynamic Youth is correct/the statement/headline is correct	E1	OE	
	Additional Guidance			
	For Always Young, if candidates use 15.1\%/12.2\% leading to $19.2(\ldots) \$.$% or$ $15.1 \% / 12.3 \%$ leading to $18.5(. .) \$.$% can score M1 A0 E1$			

Q	Answer	Mark	Comments

2(c)	Any three of Display figures in tables e.g. give the actual figures for each quarter/year rather than the differences Ensure data is accurate before publishing it (eg for 16-24, 362 000 (men) + 265 000 (women) $=628$ 000) Use a consistent time period throughout (eg for youth long term unemployment, the period was August - October but in all other parts of the briefing paper, references were made for September - November)	E3	E1 for each valid suggestion Ignore any additional but incorrect suggestions SC1 (for two or three errors identified with no/incorrect suggestions for improvement)
Improve clarity of definitions Graph needs to be more accurate eg larger scale Sort into categories Axes need to be labelled Use more charts (to make information clearer)	OE		

3(b)	A CEGIJ	B1ft	ft their diagram

3(c)	3 (days)	B1ft	ft if non-zero

3(d) At least 3 tasks plotted correctly with labelling and attempt at timescale on one axis Critical tasks plotted accurately	A1	Accept without floats		
	At least 2 floats of correct duration plotted	M1 (dep)	Must have scored first M1 mark	
	All correct including timescale evenly spaced and units labelled	A1	See diagram below.	
	Additional guidance - see diagrams on next page			

Alternative Gantt diagram

$\begin{array}{lllllllllllllll}0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 \\ & & & & & & & & & & & & & \text { day }\end{array}$ days

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments
$4 .$4(b) $\frac{\text { their 16 }}{250}$ M1			
	6.4	A1ft	Accept 6 with working ft only if working shown

4(c)	$\frac{\text { their } 43}{182}$ or $\frac{\text { their } 43}{\text { their }(43+32+107)}$	B1ft	OE fraction, decimal or percentage
0.236... or 23.6...\% ft only if fraction given			

Q	Answer	Mark	Comments
$*$ Statement 1 is false E1ft ft their part b Either "true" or "false" gets B1 if consistent with their 5(b) Because only (their) 35\% of those who get the disease are smokers E1ft Or 4.4 (\%) compared with 8 (\%) Statement 1 is true and Reference to their answer to 5(b) which must be over 50\% Statement 2 is true E1 Must also refer to 10\% or 22\% (PI) Because 22\% is more than twice 10\% E1			
5(d)	It would decrease	B1	

\mathbf{Q}	Answer	Mark	Comments

Alternative method 2

6	$\begin{aligned} & \text { If Morris is signed: }(\mathrm{E}[\text { cost }]=) 0.3 \times 65 \\ & (+12) \\ & \text { or } 0.3 \times 77 \text { or } 23.1 \\ & \hline \end{aligned}$	M1	$\begin{aligned} & 0.3 \times 77+0.7 \times 12 \\ & =23.1+8.4 \\ & =31.5 \end{aligned}$
	(£)31.5(m)	A1	
	If Morris is not signed: P (Soares is not injured) $=0.6$	B1	
	0.4×0.85 or 0.34 or 0.6×0.3 or 0.18	M1	For any of these
	$0.4 \times 0.85 \times 65$ or 0.34×65 or 22.1 or $0.6 \times 0.3 \times 65$ or 0.18×65 or 11.7	M1	
	$\begin{aligned} & 0.4 \times 0.85 \times 65 \text { or } 0.34 \times 65 \text { or } 22.1 \\ & \text { and } 0.6 \times 0.3 \times 65 \text { or } 0.18 \times 65 \text { or } 11.7 \end{aligned}$	M1	
	$\begin{aligned} & (E[\text { cost }]=) \\ & 0.4 \times 0.85 \times 65+0.6 \times 0.3 \times 65 \\ & \text { or }(£) 33.8(\mathrm{~m}) \end{aligned}$	A1	
	Better to sign Morris (or Yes) and 31.5 and 33.8	E1	
Alternative method 3			
	If Morris is not signed: P (Soares is not injured) $=0.6$	B1	
	0.4×0.85 or 0.34 or 0.6×0.3 or 0.18	M1	For any of these
	0.4×0.85 or 0.34 and 0.6×0.3 or 0.18	M1	
	$\begin{aligned} & (P[\text { relegation] }=) 0.4 \times 0.85+0.6 \times 0.3 \\ & \text { or } 0.34+0.18 \\ & \text { or } 0.52 \end{aligned}$	M1	
	(Improved chance of avoiding relegation by signing Morris =) $0.52-0.3$ or 0.22	M1	

	(Expected gain from signing Morris before taking transfer fee into account) 0.22×65 or 14.3	A1	
	Yes and 14.3 compared with 12	E1	

