Level 3 Certificate MATHEMATICAL STUDIES
 1350/2B

Paper 2B Critical path and risk analysis

Mark scheme

June 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

$\mathbf{1 (b)}$	$\begin{array}{l}\text { No labels on the (horizontal) } x \text { axis } \\ \text { Wrong units used (kg used instead of g) } \\ \text { One of the bars is incorrect (brand C's } \\ \text { ready salted) } \\ \text { No title for the graph } \\ \text { The scale labelled incorrectly as 9 } \\ \text { instead of 0.009 etc } \\ \text { Has/should not have a broken axis or } \\ \text { does not start at zero }\end{array}$	E2	$\begin{array}{l}\text { oe } \\ \text { E1 for each valid error } \\ \text { eondone improvements which imply }\end{array}$
	Additional Guidance a title		

\mathbf{Q}	Answer	Mark	Comments

1 (c)	Alternative method 1		
	$230 \div 10$	M1	or indicates there are 23 lots of 10 p Can be implied by 69 (not 69.12) or their $69.12 \div 23$ or their $69.12 \div 230 \div$ 10 or 3.(...)
	$160 \div 25 \times 10.8$ or 69.12	M1	Condone 9.6 instead of 10.8
	their $69.12 \div 23$ or 3 .(...) or $3 \times 23 \text { or } 69$ or their $69.12 \div 3$	M1	
	3.(...) or $3.005(217 \ldots)$ or 3.01 and Yes or 69.12 and 69 and Yes or 23.04 and 23 and Yes	A1	Allow 3 with method
	Alternative method 2		
	$230 \div 10$	M1	or indicates there are 23 lots of 10 p Can be implied by $6.95(\ldots$) or 6.96 or 7
	$160 \div 23$ or 6.95(...) or 6.96 or 7	M1	g per 10p 6.96 or 7 implies M2
	$10.8 \div 25 \times \text { their } 6.95(\ldots)$ or $0.432 \times \text { their } 6.95(\ldots)$	M1	Condone 9.6 instead of 10.8
	$3 .(\ldots)$ or 3.005(217 ...) or 3.01 and Yes	A1	Allow 3 with method

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

Main article

Give information about what the scores represent
Keep information nearer the graph it refers to

Show all data in a table format for ease of comparison

Show data/values for years between 2006 and 2012

State what OECD is
Write down the scores from previous PISA rather than saying gone up/down from previous

Graphs

2 (a) Add a vertical axis
Add overall average PISA/OECD scores to graph(s)
Add a broken axis
Correct the title of each graph so it says 'score' not 'ranking'

Label or add units to the $x / y /$ both axes Line up the scores precisely with the horizontal lines

State what NI is
Start the vertical scales at the same point
Show the UK line in each graph for ease of comparison

Use common vertical scales (i.e. 460 to 520) or increase height of vertical axis

Use scales/grid line so can easily read the values for each year

E1 for each valid improvement

Ignore any additional but incorrect suggestions

SC1 two errors identified but no suggestions for improvement

SC2 three errors identified but no suggestions for improvement
e.g. data is not shown in table format no details for years before 2006

\mathbf{Q}	Answer	Mark	Comments

2 (b)	makes one or more statements implying critical analysis and gives 3.24(...)\% or 3.25\% as final answer with all errors corrected or any correct method shown statements of critical analysis 1. makes reference to the denominator, e.g. should be $\div 493$ (not 509) oe 2. recognises that the $\%$ sign is placed incorrectly, e.g. should multiply 0.0314 by 100(\%) or should not put \% sign after 0.0314 oe or allow $\times 100$ seen	B3	B2 makes two statements implying critical analysis and gives no or incorrect final answer or B2 gives 3.24(...)\% or 3.25\% as final answer with all errors corrected or any correct method shown and makes no statement implying critical analysis or B1 makes one statement implying critical analysis and gives no or incorrect final answer or B1 gives 3.24(...)\% or 3.25\% as final answer with no working and no statement implying critical analysis
	Additional Guidance		
	No critical analysis can score maximum B2		

\mathbf{Q}	Answer	Mark	Comments

2 (c) (i)	Alternative method 1 (Simon)		
	493 and 478 seen or $493-478 \text { or } 15$	M1	
	15 and Yes	A1	
	Alternative method 2 (Simon)		
	[492, 495] and $[476,479]$ seen or $[492,495]-[476,479](=[13,19])$	M1	Two chosen numbers must be within the given range
	[13, 19] and Yes	A1	
	Alternative method 3 (Simon)		
	Wales is below 480 and all the others/England are above 490 and Yes	B2	B1 Wales is below 480 and all the others/England are above 490
	Additional Guidance		
	Right answer from wrong method scores MO AO eg $509-492=17$ and Yes. 509 is outside [492, 495] and 492 is outside [476, 479]		

\mathbf{Q}	Answer	Mark	Comments

2 (c) (ii)	Alternative method 1 (Rukshana)		
	$\begin{aligned} & 493 \div 506(\times 100) \text { or }[0.97,0.9744] \text { or } \\ & {[97,97.44]} \\ & \text { or } \\ & 13 \div 506(\times 100) \text { or }[0.0256,0.03] \text { or } \\ & {[2.56,2.57]} \end{aligned}$	M1	oe
	their [0.97, 0.9744] $\times 493$ or $493 \text { - their }[0.0256,0.03] \times 493$	M1	oe
	$\begin{aligned} & {[0.97,0.9744] \times 493=[478,481]} \\ & \text { and Yes } \\ & \text { or } \\ & 493-[0.0256,0.03] \times 493 \\ & =[478,481] \text { and Yes } \end{aligned}$	A1	
	Alternative method 2 (Rukshana)		
	$\begin{aligned} & {[492,495] \div[505,508](\times 100) \text { or }} \\ & {[0.968,0.98] \text { or }[96.8,98]} \\ & \text { or } \\ & {[10,16] \div[505,508](\times 100) \text { or }} \\ & {[0.0196,0.0317] \text { or }[1.96,3.17]} \end{aligned}$	M1	oe
	```their [0.968, 0.98] \times [492, 495] or [492, 495] - their [0.0196, 0.0317] * [492, 495]```	M1	oe
	$\begin{aligned} & {[0.968,0.98] \times[492,495]=[476,485)} \\ & \text { and Yes } \\ & \text { or } \\ & {[492,495]-[0.0196,0.0317]} \\ & \times[492,495]=[485,485.2] \text { and No } \end{aligned}$	A1	
		nal	uidan
	$[476,485) \rightarrow 476 \leq$ value $<485$		


$\mathbf{Q}$	Answer	Mark	Comments
3 (a)	$\frac{28}{41}$ or $0.68(\ldots)$ or $68 .(\ldots) \%$	B 1	oe


Q	Answer	Mark	Comments
3 (b)	Alternative method 1		
	$\frac{65}{41} \text { or } \frac{5.4}{41} \text { or } 65 \times 5.4$	M1	For dividing 65 or 5.4 by 41 or Multiplying 65 by 5.4
	$\frac{65}{41} \times 5.4$	M1	oe
	8560976   or   8.6 million	A1	awrt 8.6 million
	Alternative method 2		
	$\frac{28+13}{491}\left(=\frac{41}{491}\right)$	M1	
	$5.4 \text { million } \div \frac{\text { their } 41}{491}(=64.7 \text { million })$   and $\frac{13+52}{491} \times 64.7 \text { million }$	M1	
	8560976   or   8.6 million	A1	awrt 8.6 million
	Additional Guidance		
	awrt 8.5 million scores M2A1 if supported by correct working		


Q	Answer	Mark	Comments
	The survey asked adults: the rate in the   whole population (including children)   may be different   The rate in the population may be   different than the rate in the sample   The sample was relatively small   compared to the size of the population	E1	E1 for any reasonable statement
3 (c)	The survey data may be out of date   and so not representative of the current   population	Additional Guidance	
	'survey is biased' scores E0 unless supported with a reason or reference to the population.   'sample is small' or 'needs a bigger sample' scores E0 unless reference is made to the size of   the population (possibly implied)   'some people may not be aware they have asthma' or 'misdiagnosis' scores E0		




Q	Answer	Mark	Comments
4 (c) (i)	1	B1	


Q	Answer	Mark	Comments
$\mathbf{4}$ (c) (ii)	$0.35+0.30+0.06$ or   $1-0.08-0.21$	M1	P(delay of more than 1 day)
	0.71	A1	oe



Q	Answer	Mark	Comments
$\mathbf{5}(\mathbf{b})$	4800	B1	ft from 5 (a) or correct


Q	Answer	Mark	Comments
5	$\frac{\text { their } 5800+\text { their } 1200}{10800}$ or $\frac{7000}{10800}$	M1	ft their 5 (a) for the numerator   Denominator must be 10800
	$\frac{35}{54}$	A1ft	Final answer must be a fraction in its   lowest terms
	Additional Guidance		
	$0.648(\ldots)$ or 0.65 implies M1A0		


Q	Answer	Mark	Comments
5 (d)	$2 \times \frac{\text { their total in set } C}{20000} \times \frac{\text { remainder }}{19999}$   or $2 \times \frac{4400}{20000} \times \frac{15600}{19999}$   or $0.343(2 \ldots)$	M1	oe   Condone omission of $2 \times$   Condone both denominators 20000   Allow (for example) $2 \times \frac{44}{200} \times \frac{156}{200}$
	0.34	A1ft	ft
	Additional Guidance		
	0.17(16...) implies M1A0		


Q	Answer	Mark	Comments
6 (a)	Alternative method 1		
	1-0.4 or 0.6	M1	Probability that whales do not appear in the 1st week (or any given week)
	$0.6 \times 0.4$ or $1-0.4-0.36$ or 0.24	M1	Probability that whales appear in the 2nd week but not the 1st   Can be awarded if a quantity is multiplied by 0.6 and then by 0.4 oe
	$0.6 \times 0.6$ or $1-0.4-0.24$ or 0.36	M1	Probability that whales do not appear in either week   Can be awarded if a quantity is multiplied by 0.6 and then by 0.6 oe
	Option B $0.4 \times(80-200)$ or $32(-) 80$ or -48	M1	Contribution to expected costs if whales appear   Do not accept -48 from $0.24 \times-200$
	$\begin{aligned} & \text { their } 0.6 \times 50 \\ & \text { or } \\ & 30 \end{aligned}$	M1	Contribution to expected costs if whales do not appear   (in thousands or otherwise throughout)
	$\begin{aligned} & \text { their }-48+30 \\ & \text { or } \\ & -18 \end{aligned}$	M1	Calculates expected cost of Option B by adding their two contributions   Do not accept -18 from $0.6 \times-30$


Q	Answer	Mark	Comments
6 (a)   Cont.	Option C   their $0.24 \times(130-200)$   or $31.2 \text { (-) } 48$   or $\mid-16.8$	M1	Contribution to expected cost if whales appear in 2nd week
	their $0.36 \times 100$ or 36	M1	Contribution to expected cost if whales do not appear in either week
	their $-48+$ their $-16.8+$ their 36 or -28.8	M1	Calculates expected cost of Option C by adding their three contributions   Or: expected profit from Option $\mathrm{C}=$ expected profit from Option B + expected profit from staying an extra week if necessary $=18+0.6 \times 18$
	(Option A) £0   and   (Option B) £18 000   and   (Option C) £28 800	A1	Expected gains for all three options
	Recommends Option C	E1ft	ft their gains if all three are stated


Q	Answer	Mark	Comments
6 (a)   Cont.	Alternative method 2		
	$1-0.4$ or 0.6	M1	Probability that whales do not appear in the 1st week (or any given week)
	$0.6 \times 0.4$ or $1-0.4-0.36$ or 0.24	M1	Probability that whales appear in the 2nd week but not the 1st   Can be awarded if a quantity is multiplied by 0.6 and then by 0.4 oe
	$0.6 \times 0.6$ or $1-0.4-0.24$ or 0.36	M1	Probability that whales do not appear in either week   Can be awarded if a quantity is multiplied by 0.6 and then by 0.6 oe
	Option B $\begin{aligned} & 0.4 \times 50+0.4 \times 30+0.6 \times 50 \\ & \text { or } \\ & 20+12+30 \end{aligned}$   or $62$	M1	Expected cost   (in thousands or otherwise throughout)
	$0.4 \times 200$ or 80	M1	Expected profit
	their 80 - their 62 or 18	M1	Expected gain


Q	Answer	Mark	Comments
6 (a)   Cont.	Option C $\begin{aligned} & 0.4 \times 50+0.4 \times 30+\text { their } 0.24 \times 100+ \\ & \text { their } 0.24 \times 30+0.36 \times 100 \\ & \text { or } \\ & 20+12+24+7.2+36 \end{aligned}$   or   99.2	M1	Expected cost
	$0.4 \times 200+$ their $0.24 \times 200$ or 128	M1	Expected profit
	their 128 - their 99.2 or 28.8	M1	Expected gain
	(Option A) £0   and   (Option B) £18 000   and   (Option C) £28 800	A1	Expected gains for all three options
	Recommends Option C	E1ft	ft their gains if all three are stated


Q	Answer	Mark	Comments
6 (a)   Cont.	Alternative method 3		
	$1-0.4$ or 0.6	M1	Probability that whales do not appear in the 1st week (or any given week)
	$0.6 \times 0.4$ or $1-0.4-0.36$ or 0.24	M1	Probability that whales appear in the 2nd week but not the 1st   Can be awarded if a quantity is multiplied by 0.6 and then by 0.4 oe
	$0.6 \times 0.6$ or $1-0.4-0.24$ or 0.36	M1	Probability that whales do not appear in either week   Can be awarded if a quantity is multiplied by 0.6 and then by 0.6 oe
	Option B $0.4 \times(200-30) \text { or } 68$	M2	Expected profit from seeing whales in the 1st week, not including fixed costs   M1 for either $0.4 \times 200$ or $0.4 \times(-) 30$
	their 68-50 or 18	M1	Expected gain   (Expected profit subtract fixed costs)


Q	Answer	Mark	Comments
6 (a)   Cont.	$\frac{\text { Option C }}{0.24 \times 170 \text { or } 40.8}$	M1	Expected profit from seeing whales in the 2nd week, not including fixed costs
	$\begin{aligned} & 0.4 \times 50 \text { or } 20 \\ & \text { or } \\ & 0.6 \times 100 \text { or } 60 \end{aligned}$	M1	Expected fixed cost of staying for one week   Expected fixed cost of staying for two weeks
	their 68 + their 40.8 - their 20 - their 60 or $28.8$	M1	Expected gain   (Expected profit from seeing whales in 1st week or 2nd week subtract expected fixed costs of staying for 1 or 2 weeks)
	(Option A) £0   and   (Option B) £18 000   and   (Option C) £28 800	A1	Expected gains for all three options
	Recommends Option C	E1ft	ft their gains if all three are stated
	Additional Guidance		
	Accept working where signs are reversed consistently throughout (stating expected gains rather than costs, for example).		
	Probabilities may be seen in tree diagrams.		


Q	Answer	Mark	Comments
	don't want to risk losing $£ 100$ 000   cannot afford to pay the upfront costs   want to get home   the choice may be incompatible with   deadlines   they may not have enough resources   to stay   they may want to go to another site   with a higher probability of whales   changing conditions   more up-to-date information becomes   available   the producer doubts the validity of the   estimates or expected costs   another benefit (e.g. accolade, lower   risk of loss) might become available if   the producer makes a different choice	E1ft	E1 for any valid reason   ft their answer to 6 (a)

