Level 3 Certificate Mathematical Studies

1350/2C - Paper 2C - Graphical techniques

Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Q	Answer	Mark	Comments
1a	71.5	B1	
	Additional Guidance		

Q	Answer	Mark	Comments
1b	Graph 1: EU immigration in the UK Identify 'm' as millions or state what ' m ' means Reposition 'm' Use grid/graph paper to enable more accurate readings Extend the all curves to 2045/ same point Add a broken axis Add a line for high net migration The starting point for each line should be the same Graph 2: Brexit's impact on the pound Use a key Indicate what 'NIESR' or 'OECD' stands for Use lines/points rather than bars Switch or remove the higher and lower labels Add more organisations Add space between each column Add (horizontal) grid lines Make it clear which currency they are comparing with	E4	E1 for each valid improvement with a maximum of E2 for each graph Ignore any additional but incorrect suggestions Not label the axes Not make lines distinct from each other Not define 'high' or 'low' Not make a bar chart SC1 (two errors identified but no suggestions for improvement) SC2 (three errors identified but no suggestions for improvement) eg. Don't know what ' m ' stands for, line not extended to 2045 etc
	Additional Guidance		

Q	Answer	Mark	Comments
1c	Alternative method 1		
	$14600000000 \div 52$ or $1.46 \times 10^{10} \div 52$ or $14.6 \div 52$ or [280 000 000, 281000 000]	M1	oe
	[280 000 000, 281000 000] and No	A1	oe SC1 $14600000000 \div 48=304$ million and No
	Alternative method 2		
	```350000000 * 52 or 3.5\times1\mp@subsup{0}{}{8}\times52 or [18000 000 000,18 300 000 000]```	M1	oe
	[18 000000 000, 18300000000 ] and No	A1	oe SC1 $350000000 \times 48=16.8$ billion and No
	Alternative method 3		
	14.6billion $\div 350$ million	M1	
	41.7 weeks and No or   41.7 and 52 and No	A1	
	Additional Guidance		
	For use of $[48,52$ ) use SC1 rule		
	Use of $365 \div 7$ or $365.25 \div 7$ in place of 52 is correct		
	Allow use of words such as million/billion or standard form rather than full ordinary figures		
	'Exaggeration' implies No		
	For final answer, allow self-correction		


Q	Answer	Mark	Comments
1d	Tim Alternative method 1		
	$(46500001-33577342) \div 46500001$   or $12922659 \div 46500001$ or 0.278   or   $33577342 \div 46500001$ or 0.72	M1	oe   Condone interchange of 33577342 with 33551983 accept [0.26, 0.285] or [27, 28]\% accept $[0.715,0.74]$ or $[71.5,74] \%$
	0.278 or $27.8(\%)$ and No or 72 and 80 and No	A1	accept $[0.27,0.28]$ or $[27,28] \%$   accept $[71.5,74] \%$
	Tim   Alternative method 2		
	$0.2 \times 46500001$ or 9300000 and 46500001 - 33577342	M1	accept [9 200 000, 9400 000]   accept [46 000 000, 13000 000]   Condone interchange of 33577342 with 33551983
	9300000 and 12922659 and No	A1	
	Kelly   Alternative method 1		
	```16 141 241\div12 or 1 345103 and 17410742\div1345103 or 12.9(...)```	M1	allow reverse order
	12.9(...) and Yes or 12.0(...) and Yes	A1	
	Kelly Alternative method 2		
	```16141241\div17410742 or [0.925,0.928] or 12\div13 or 0.923```	M1	allow reverse order
	[0.925,0.928] and 0.923 and Yes	A1	

## Kelly <br> Alternative method 3

\(\left.$$
\begin{array}{|l|c|l|}\hline \begin{array}{l}33551983 \div 25 \times 12 \text { or } 16104951 .(84) \\
\text { or } \\
33551983 \div 25 \times 13 \text { or } 17447031 .(16)\end{array}
$$ \& M1 \& Condone interchange of 33577342 with <br>

33551983\end{array}\right]\)\begin{tabular}{l}
<br>
\hline 16104951 and 17447031 and Yes <br>

\hline | Kelly |
| :--- |
| Alternative method 4 | <br>

\hline
\end{tabular}

$12 \div 25$ or 0.48   or   $13 \div 25$ or 0.52	M1	oe
0.48 and 0.52 and Yes	A1	oe

## Kelly

Alternative method 5

$16141241 \div 12$ or 1345103 and   $17410742 \div 13$ or 1339288		M1	
1345103 and 1339288 and Yes		A1	
Larissa			
$2000000+16141241$ or 18141241or$2000000+33577342$ or 35577342or$2000000+33551983$ or 35551983		M1	Condone interchange of 33577342 with 33551983
$\begin{aligned} & 18141241 \div \\ & 35577342(\times 100) \end{aligned}$	$\begin{aligned} & 18141241 \div \\ & 35551983(\times 100) \end{aligned}$	M1	oe Condone interchange of 33577342 with 33551983
0.509(...) or 0.51 and No (from using 35577 342)	$\begin{aligned} & 0.5102(\ldots) \text { or } \\ & 0.5103 \text { and Yes } \\ & \text { (from using } \\ & 35551 \text { 983) } \end{aligned}$	A1	oe   A1 for the correct answer and statement SC1 for 54.(...)\%

## Additional Guidance

Be careful not all possible alternatives are shown for this question.
Any fully correct method gains full marks.
Condone interchange of 33577342 with 33551983

Q	Answer	Mark	Comments
2	Alternative method 1 - Euros		
	$1.08 \div 0.9$ or 1.2	M1	
	$17000 \times$ their 1.2 or 20400	M1	Allow 1.08 or 1.188 or 1.19 in place of 1.2 to obtain 18360 or 20196 or 20230
	$253000 \times 1.125$ or 284625	M1	oe
	their $284625 \times 1.08$ or 307395	M1	oe
	their $20400+307395$ or 20400 + their 307395 or 327795	M1	
	327795 and Yes	A1	SC4 for 325755 or 327591 or 327625
	Alternative method 2- Pounds		
	$1.08 \div 0.9$ or 1.2	M1	
	$17000 \times$ their 1.2 or 20400	M1	Allow 1.08 or 1.188 or 1.19 in place of 1.2 to obtain 18360 or 20196 or 20230
	$253000 \times 1.125$ or 284625	M1	oe
	their $20400 \div 1.08$ or 18888 .(89) or   $327500 \div 1.08$ or 303240. (74)	M1	oe
	$\begin{aligned} & \text { their } 18888 .(89)+284625 \\ & \text { or } \\ & 18888 .(89)+\text { their } 284625 \\ & \text { or } \\ & 303513 .(89) \end{aligned}$	M1	
	303 513.(89) and 303 240.(74)   and   Yes	A1	$\begin{gathered} \text { SC4 for } 301625 \text { or } 303325 \text { or } \\ 303356 .(4815) \end{gathered}$
	Additional Guidance		
	Alternative 2: Method of $17000 \div 0.9(=18888.89)$ scores the $1^{\text {st }} \mathrm{M} 1,2^{\text {nd }} \mathrm{M} 1$ and $4^{\text {th }} \mathrm{M} 1$		


Q	Answer	Mark	Comments
3a	$150 \div 60$	M1	
	2.5	A1	


Q	Answer	Mark	Comments
3b	$t=0,30,60$	B2	B1 for two times correct   Maximum of B1 if there are   extra times.


Q	Answer	Mark	Comments
3c	Draws tangent	M1	
	Finds gradient of their line	M1	
	Obtains gradient in the range 3.5 to 4.5	A1	


Q	Answer	Mark	Comments
3d	$150=\frac{1}{8} \times 60^{2}-60^{3} k$   Or   $75=\frac{1}{8} \times 30^{2}-30^{3} k$	M1	Any correct coordinates from   the curve can be used   Can use 74 or 76 instead of 75.
$150=450-216000 k$   or   $75=112.5-27000 k$	M1	Follow through their   coordinates.	
$k=\frac{1}{720}$ or 0.00138 or 0.00139 or $1.38 \times 10^{-3}$	A1	Note that 74 gives 0.001425   And that 76 gives 0.00135   Accept AWRT 0.0014	


Q	Answer	Mark	Comments
$\mathbf{4 a}$	$(4910-2495)$ and $(123.2-72.4)$	M1	
	$2415 \div 50.8=47.539 \ldots$	A1	Answer Given
	47.54		


Q	Answer	Mark	Comments
4b	Alternative 1		
	Draws a straight line through $y=47.54$ and attempts to read $x$ values at 4 intersection points or finds total time between intersections.	M1	
	$\frac{(99.5-95.5)+(108.5-101)}{(123.2-72.4)} \times 100$	M1	Award mark if candidate correctly uses their time values in the numerator
	$\frac{4+7.5}{50.8} \times 100$   22.6(37795)\% so No extra points	A1	Numerator in the range 10.5 to 12.5 .   FT their values   Note:   10.5 gives 20.7\%   11 gives 21.7\%   11.5 gives 22.6\%   12 gives 23.6\%   12.5 gives $24.6 \%$
	Alternative 2		
	Draws a straight line through $y=47.54$ and attempts to read x values at 4 intersection points or finds total time between intersections.	M1	
	$(132.2-72.4) \times 0.25=12.7$	M1	Condone using 72 and 123.
		A1	FT their values


|  | $(99.5-95.5)+(108.5-101)=11.5$ <br> $11.5<12.7$ so No extra points | Time from graph in the <br> range 10.5 to 12.5 |
| :--- | :--- | :--- | :--- |


Q	Answer	Mark	Comments
$\mathbf{4 c}$	5	B1	There are 3 maximum   points and 2 minimum   points on the graph
	Zero gradient or turning or stationary points	B1	If candidate gives 3 as an   answer (looks at the   maximum points only) but   gives the correct reason   award B0 B1


Q	Answer	Mark	Comments
5a	Before $T$ hours, the rate (gradient) is   variable	B1	Allow changes (variable);
	After $T$ hours the rate is constant	B1	Stays the same (constant)   Allow a specific value for   the gradient eg -0.381.


Q	Answer	Mark	Comments
5b	Alternative Method 1		
	States or uses $m=-0.39$	B1	Allow $\pm 0.39$
	Uses $(19.2,0)$ and "their $m$ " to find $c$ $0=(-0.39 \times 19.2)+c$	M1	SC1 Award for seeing 7.488 at any stage in their working.
	$c=7.5$	A1	from $\mathrm{c}=7.488$
	Uses $h=5$ and "their $m$ " to find $T$ $5=(\text { "their } m " \times T)+\text { "their } c \text { " }$	M1	SC1 Award for seeing 12.82 at any stage in their working.
	$T=6.4$	A1	from $\mathrm{T}=6.379 \ldots$
	Alternative Method 2		
	States or uses $m=-0.39$	B1	Allow $\pm 0.39$
	Uses $(19.2,0)$ to get $\quad 0=(19.2 \times " m ")+c$   and $(T, 5) \quad$ to get $\quad 5=(T \times " m ")+c$	M1	
	$5=\left(T \times " m\right.$ ) $-19.2 \times{ }^{\prime \prime} m^{\prime \prime}$	M1	Or equivalent for their values
	$T=6.4$   and $c=7.5$	A2	


Q	Answer	Mark	Comments
5c	Alternative Method 1		
	Uses 0.39	B1	
	$0.39 \times 4.8=1.872$	M1	
	$11+1.872=12.872$	A1	AWRT 12.9 or 12.8
	Alternative Method 2		
	Uses same gradient to find new linear function $h_{2}=-0.39 t+c_{2}$	B1	
	Uses $(24,0)$ to find $c_{2}=9.36$ and subtracts "their $c_{1}$ " from "their $c_{2}$ "	M1	
	New height $=11+1.87=12.87$	A1	AWRT 12.9 or 12.8
	Alternative Method 3		
	Draws triangle joining $(6.38,0),(6.38, h)$ and $(24,0)$	B1	May be implied by calculations.   Allow use of 6.4
	$\begin{gathered} \frac{h}{24-6.38}=0.39 \\ h=17.62 \times 0.39=6.872 \end{gathered}$	M1	
	New height $=6+6.872=12.87$	A1	AWRT 12.9 or 12.8


$\mathbf{Q}$	Answer	Mark	Comments
$\mathbf{6 a}$	8103	B1	Accept 8100


$\mathbf{Q}$	Answer	Mark	Comments
$\mathbf{6 b}$	$3000=e^{0.6 t}$	M1	
	$t=\frac{1}{0.6} \ln 3000$	A1	May be implied by final   answer.
	13.34   Or 13hours and 20 or 21 minutes	A1	ARWT 13.3


Q	Answer	Mark	Comments
6c	Table completed correctly	M1	$\begin{aligned} & (0,1) \\ & (1,1.822) \\ & (2,3.320) \\ & (3,6.050) \\ & (4,11.023) \\ & (5,20.085) \end{aligned}$   Allow 1 error.
	Accurate curve based on their points	A1	
	Uses a tangent to find gradient	M1	
	Gradient in the range 3.2 to 3.8	A1	


Q	Answer	Mark	Comments
6d	Alternative 1		
	Seeing $e^{0.6(t+T)}$	M1	
	Seeing $2 e^{0.6 t}$	M1	
	$2 e^{0.6 t}=e^{0.6(t+T)}$	A1	
	$2=e^{0.6 T}$	M1	
	$T=\frac{1}{0.6} \ln 2=1.16 \text { hours }$	A1	AWRT 1.2
	Alternative 2 (Example)		
	$100=e^{0.6 t_{1}}$	M1	Uses a specific value for $N$
	$200=e^{0.6 t_{2}}$	M1	Uses twice their specific value
	$t_{1}=\frac{\ln 100}{0.6}=7.675$ and $t_{2}=\frac{\ln 200}{0.6}=8.8305$	A1	
	$t_{2}-t_{1}$	M1	
	$=1.16$	A1	AWRT 1.2

