

Level 3 Certificate Mathematical Studies

1350/2C - Paper 2C - Graphical techniques

Mark scheme

1350

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Q	Answer	Mark	Comments
1a	71.5	B1	
	Ad	ditional G	Guidance

Q	Answer	Mark	Comments
1b	Graph 1: EU immigration in the UK	E4	E1 for each valid improvement with a maximum of E2 for each graph
	Identify 'm' as millions or state what 'm' means		Ignore any additional but incorrect suggestions
	Reposition 'm'		
	Use grid/graph paper to enable more accurate readings		Not label the axes
	Extend the all curves to 2045/ same		Not make lines distinct from each other
	Add a broken axis		Not define 'high' or 'low'
	Add a line for high net migration		Not make a bar chart
	The starting point for each line should be the same		SC1 (two errors identified but no suggestions for improvement)
	Graph 2: Brexit's impact on the pound		SC2 (three errors identified but no suggestions for improvement)
	Use a key		eq. Don't know what 'm' stands for line not
	Indicate what 'NIESR' or 'OECD' stands for		extended to 2045 etc
	Use lines/points rather than bars		
	Switch or remove the higher and lower labels		
	Add more organisations		
	Add space between each column		
	Add (horizontal) grid lines		
	Make it clear which currency they are comparing with		
	Additional Guidance		

Q	Answer	Mark	Comments			
1c	Alternative method 1					
	14 600 000 000 ÷ 52	M1	oe			
	$1.46 \times 10^{10} \div 52$					
	or 14.6 ÷ 52					
	or					
	[280 000 000, 281 000 000]					
	[280 000 000, 281 000 000] and No	A1	oe SC1 14 600 000 000 ÷ 48 = 304million and No			
	Alternative method 2					
	350 000 000 × 52	M1	oe			
	$3.5 \times 10^8 \times 52$					
	or [18 000 000 000, 18 300 000 000]					
	[18 000 000 000, 18 300 000 000] and No	A1	oe SC1 350 000 000 × 48 = 16.8billion and No			
	Alternative method 3					
	14.6billion ÷ 350million	M1				
	41.7 weeks and No or 41.7 and 52 and No	A1				
	Additional Guidance					
	For use of [48, 52) use SC1 rule					
	Use of 365 ÷ 7 or 365.25 ÷ 7 in place of 52 is correct					
	Allow use of words such as million/billion or standard form rather than full ordinary figures					
	'Exaggeration' implies No					
	For final answer, allow self-correction					

	Answer	Mark	Comments			
	Tim Alternative method 1					
	(46 500 001 – 33 577 342) ÷ 46 500 001 or 12 922 659 ÷ 46 500 001 or 0.278 or 33 577 342 ÷ 46 500 001 or 0.72	M1	oe Condone interchange of 33 577 342 with 33 551 983 accept [0.26, 0.285] or [27, 28]% accept [0.715, 0.74] or [71.5, 74]%			
	0.278 or 27.8(%) and No or 72 and 80 and No	A1	accept [0.27, 0.28] or [27, 28]% accept [71.5, 74]%			
	Tim Alternative method 2	1	1			
-	0.2 × 46 500 001 or 9 300 000 and 46 500 001 – 33 577 342	M1	accept [9 200 000, 9 400 000] accept [46 000 000, 13 000 000] Condone interchange of 33 577 342 with 33 551 983			
	9 300 000 and 12 922 659 and No	A1				
	Kelly Alternative method 1					
	16 141 241 ÷ 12 or 1 345 103 and 17 410 742 ÷ 1 345 103 or 12.9()	M1	allow reverse order			
	12.9() and Yes or 12.0() and Yes	A1				
	Kelly Alternative method 2					
-	16 141 241 ÷ 17 410 742 or [0.925,0.928] or 12 ÷ 13 or 0.923	M1	allow reverse order			

Kelly Alternative method	3			
33 551 983 ÷ 25 ×12	? or 16 104 951.(84)	M1	Condone interchange of 33 577 342 wi	
or 33 551 983 ÷ 25 ×13 or 17 447 031.(16)			33 551 983	
16 104 951 and 17 4	147 031 and Yes	A1		
Kelly Alternative method	4	1		
12 ÷ 25 or 0.48		M1	ое	
or 13 ÷ 25 or 0.52				
0.48 and 0.52 and Y	′es	A1	ое	
Kelly Alternative method	5			
16 141 241 ÷ 12 or 1	345 103	M1		
and 17 410 742 ÷ 13 or 1	339 288			
1 345 103 and 1 339	9 288 and Yes	A1		
Larissa				
2 000 000 + 16 141	241 or 19 141 241	N/4		
or	241 01 10 141 241			
2 000 000 + 33 577	342 or 35 577 342		Condone interchange of 33 577 342 wi	
or 2 000 000 + 33 551 5	983 or 35 551 983		33 551 983	
10 111 011 .	10 1 11 0 11 .	M1	oe	
35 577 342 (×100)	35 551 983 (×100)		Condone interchange of 33 577 342 wi 33 551 983	
0.509() or	0.5102() or	۸1	0e A1 for the correct answer and stateme	
(from using	(from using		A nor the correct answer and stateme	
35 577 342)	35 551 983)		SC1 for 54.()%	
Additional Guidance	e			
Be careful not all pos	ssible alternatives are s	hown foi	this question.	

	Answer	Mark	Comments			
Α	Iternative method 1 – Euros					
1.	.08 ÷ 0.9 or 1.2	M1				
17	7 000 × their 1.2 or 20 400	M1	Allow 1.08 or 1.188 or 1.19 in place of 1.2 to obtain 18 360 or 20 196 or 20 230			
25	53 000 × 1.125 or 284 625	M1	oe			
th	neir 284 625 × 1.08 or 307 395	M1	oe			
th 20 or	neir 20 400 + 307 395 or 0 400 + their 307 395 r 327 795	M1				
32	27 795 and Yes	A1	SC4 for 325 755 or 327 591or 327 625			
Α	Alternative method 2– Pounds					
1.	.08 ÷ 0.9 or 1.2	M1				
17	7 000 × their 1.2 or 20 400	M1	Allow 1.08 or 1.188 or 1.19 in place of 1.2 to obtain 18 360 or 20 196 or 20 230			
25	53 000 × 1.125 or 284 625	M1	ое			
their 20 4 or 327 500 ÷	neir 20 400 ÷ 1.08 or 18 888.(89) r 27 500 ÷ 1.08 or 303 240.(74)	M1	oe			
th or 18 or 30	neir 18 888.(89) + 284 625 r 8 888.(89) + their 284 625 r 03 513.(89)	M1				
30 ar Ye	03 513.(89) and 303 240.(74) nd es	A1	SC4 for 301 625 or 303 325 or 303 356.(4815)			
A	dditional Guidance		1			
A	Iternative 2: Method of 17 000 ÷ 0.9 (=18 88	8.89) sco	pres the 1 st M1, 2 nd M1 and 4 th M1			

Q	Answer	Mark	Comments
3a	150 ÷ 60	M1	
	2.5	A1	

Q	Answer	Mark	Comments
3b	<i>t</i> = 0, 30, 60	B2	B1 for two times correct Maximum of B1 if there are extra times.

Q	Answer	Mark	Comments
3c	Draws tangent	M1	
	Finds gradient of their line	M1	
	Obtains gradient in the range 3.5 to 4.5	A1	

Q	Answer	Mark	Comments
3d	$150 = \frac{1}{8} \times 60^2 - 60^3 k$	M1	Any correct coordinates from the curve can be used
	Or		Can use 74 or 76 instead of 75.
	$75 = \frac{1}{8} \times 30^2 - 30^3 k$		
	150 = 450 - 216000k or	M1	Follow through their coordinates.
	75 = 112.5 - 27000k		
	$k = \frac{1}{720}$ or 0.00138 or 0.00139 or 1.38×10^{-3} $1.3\dot{8} \times 10^{-3}$ or 1.39×10^{-3}	A1	Note that 74 gives 0.001425 And that 76 gives0.00135 Accept AWRT 0.0014

Q	Answer	Mark	Comments
4a	(4910 – 2495) and (123.2 – 72.4)	M1	
	2415 ÷ 50.8 = 47.539 47.54	A1	Answer Given

Q	Answer	Mark	Comments
4b	Alternative 1		
	Draws a straight line through $y = 47.54$ and attempts to read x values at 4 intersection points or finds total time between intersections.	M1	
	$\frac{(99.5 - 95.5) + (108.5 - 101)}{(123.2 - 72.4)} \times 100$	M1	Award mark if candidate correctly uses their time values in the numerator.
	$\frac{4+7.5}{50.8} \times 100$		Numerator in the range 10.5 to 12.5.
	22.6(37795)% so No extra points		FT their values
			Note:
		A1	10.5 gives 20.7%
			11 gives 21.7%
			11.5 gives 22.6%
			12 gives 23.6%
			12.5 gives 24.6%
	Alternative 2	I	
	Draws a straight line through $y = 47.54$ and attempts to read x values at 4 intersection points or finds total time between intersections.	M1	
	(132.2 – 72.4)×0.25 = 12.7	M1	Condone using 72 and 123.
		A1	FT their values

(99.5 - 95.5) + (108.5 - 101) = 11.5 11.5 < 12.7 so No extra points	Time from graph in the range 10.5 to 12.5
--	---

Q	Answer	Mark	Comments
4c	5	B1	There are 3 maximum points and 2 minimum points on the graph
	Zero gradient or turning or stationary points	B1	If candidate gives 3 as an answer (looks at the maximum points only) but gives the correct reason award B0 B1

Q	Answer	Mark	Comments
5a	Before T hours, the rate (gradient) is variable	B1	Allow changes (variable);
	After <i>T</i> hours the rate is constant	B1	Stays the same (constant) Allow a specific value for the gradient eg -0.381.

Q	Answer	Mark	Comments	
	Alternative Method 1			
	States or uses $m = -0.39$	B1	Allow ± 0.39	
	Uses (19.2, 0) and "their <i>m</i> " to find <i>c</i> 0 = (-0.39 x 19.2) + <i>c</i>	M1	SC1 Award for seeing 7.488 at any stage in their working.	
	<i>c</i> = 7.5	A1	from c = 7.488	
	Uses $h = 5$ and "their m " to find T 5 = ("their m " x T) + "their c "	M1	SC1 Award for seeing 12.82 at any stage in their working.	
5b	<i>T</i> = 6.4	A1	from T = 6.379	
	Alternative Method 2			
	States or uses $m = -0.39$	B1	Allow ± 0.39	
	Uses (19.2, 0) to get $0 = (19.2 \times "m") + c$ and (<i>T</i> , 5) to get $5 = (T \times "m") + c$	M1		
	$5 = (T \times "m") - 19.2 \times "m"$	M1	Or equivalent for their values	
	<i>T</i> = 6.4			
	and	A2		
	<i>c</i> = <i>1</i> .5			

Q	Answer	Mark	Comments	
	Alternative Method 1			
	Uses 0.39	B1		
	0.39 × 4.8 = 1.872	M1		
	11 + 1.872 = 12.872	A1	AWRT 12.9 or 12.8	
	Alternative Method 2			
	Uses same gradient to find new linear function $h_2 = -0.39t + c_2$	B1		
5c	Uses (24, 0) to find $c_2 = 9.36$ and subtracts "their c_1 " from "their c_2 "	M1		
	New height = 11 + 1.87 = 12.87	A1	AWRT 12.9 or 12.8	
	Alternative Method 3			
	Draws triangle joining (6.38, 0), (6.38, <i>h</i>) and (24, 0)	B1	May be implied by calculations.	
			Allow use of 6.4	
	$\frac{h}{24 - 6.38} = 0.39$ $h = 17.62 \times 0.39 = 6.872$	M1		
	New height = 6 + 6.872 = 12.87	A1	AWRT 12.9 or 12.8	

Q	Answer	Mark	Comments
6a	8103	B1	Accept 8100

Q	Answer	Mark	Comments
6b	$3000 = e^{0.6t}$	M1	
	$t = \frac{1}{0.6} \ln 3000$	A1	May be implied by final answer.
	13.34 Or 13hours and 20 or 21 minutes	A1	ARWT 13.3

Q	Answer	Mark	Comments
6c	Table completed correctly	M1	(0,1)
			(1,1.822)
			(2, 3.320)
			(3, 6.050)
			(4, 11.023)
			(5, 20.085)
			Allow 1 error.
	Accurate curve based on their points	A1	
	Uses a tangent to find gradient	M1	
	Gradient in the range 3.2 to 3.8	A1	

Q	Answer	Mark	Comments
6d	Alternative 1		
	Seeing $e^{0.6(t+T)}$	M1	
	Seeing $2e^{0.6t}$	M1	
	$2e^{0.6t} = e^{0.6(t+T)}$	A1	
	$2 = e^{0.6T}$	M1	
	$T = \frac{1}{0.6} \ln 2 = 1.16$ hours	A1	AWRT 1.2
	Alternative 2 (Example)		
	$100 = e^{0.6t_1}$	M1	Uses a specific value for N
	$200 = e^{0.6t_2}$	M1	Uses twice their specific value
	$t_1 = \frac{\ln 100}{0.6} = 7.675 \text{ and } t_2 = \frac{\ln 200}{0.6} = 8.8305$	A1	
	$t_2 - t_1$	M1	
	= 1.16	A1	AWRT 1.2