Level 3 Certificate MATHEMATICAL STUDIES 1350/2C

Paper 2C Graphical techniques

Mark scheme

June 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

$\mathbf{1 (b)}$	$\begin{array}{l}\text { No labels on the (horizontal) } x \text { axis } \\ \text { Wrong units used (kg used instead of g) } \\ \text { One of the bars is incorrect (brand C's } \\ \text { ready salted) } \\ \text { No title for the graph } \\ \text { The scale labelled incorrectly as 9 } \\ \text { instead of 0.009 etc. } \\ \text { Has/should not have a broken axis or } \\ \text { does not start at zero }\end{array}$	E2	$\begin{array}{l}\text { oe } \\ \text { E1 for each valid error } \\ \text { eondone improvements which imply }\end{array}$
	Additional Guidance a title		

\mathbf{Q}	Answer	Mark	Comments

1 (c)	Alternative method 1		
	$230 \div 10$ or $2.3(0) \div 0.1(0)$	M1	or indicates there are 23 lots of 10p Can be implied by 69 (not 69.1(2)) or their $69.1(2) \div 23$ or their $69.1(2) \div(230$ $\div 10$) or 3.(...)
	$160 \div 25 \times 10.8$ or 69.1(2)	M1	Condone 9.6 instead of 10.8
	$\begin{aligned} & \text { their } 69.1(2) \div 23 \text { or } 3 .(\ldots) \\ & \text { or } \\ & 3 \times 23 \text { or } 69 \\ & \text { or } \\ & \text { their } 69.1(2) \div 3 \end{aligned}$	M1	
	3.(...) or $3.005(217 \ldots$) or 3.01 and Yes or 69.1(2) and 69 and Yes or 23.04 and 23 and $Y e s$	A1	Allow 3 with method
	Alternative method 2		
	$230 \div 10$ or $2.3(0) \div 0.1(0)$	M1	or indicates there are 23 lots of 10 p Can be implied by $6.95(\ldots$) or 6.96 or 7
	$160 \div 23$ or $6.95(\ldots)$ or 6.96 or 7	M1	g per 10p 6.96 or 7 implies M2
	$\begin{aligned} & 10.8 \div 25 \times \text { their } 6.95(\ldots) \\ & \text { or } \\ & 0.432 \times \text { their } 6.95(\ldots) \end{aligned}$	M1	Condone 9.6 instead of 10.8
	3.(...) or 3.005(217...) or 3.01 and Yes	A1	Allow 3 with method

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

\mathbf{Q}	Answer	Mark	Comments

Main article

Give information about what the scores represent
Keep information nearer the graph it refers to

Show all data in a table format for ease of comparison

Show data/values for years between 2006 and 2012

State what OECD is
Write down the scores from previous PISA rather than saying gone up/down from previous

Graphs

2 (a) Add a vertical axis
Add overall average PISA/OECD scores to graph(s)
Add a broken axis
Correct the title of each graph so it says 'score' not 'ranking'

Label or add units to the $x / y /$ both axes
Line up the scores precisely with the horizontal lines

State what NI is
Start the vertical scales at the same point
Show the UK line in each graph for ease of comparison

Use common vertical scales (i.e. 460 to 520) or increase height of vertical axis

Use scales/grid line so can easily read the values for each year

E1 for each valid improvement

Ignore any additional but incorrect suggestions

SC1 two errors identified but no suggestions for improvement
SC2 three errors identified but no suggestions for improvement
e.g. data is not shown in table format no details for years before 2006

\mathbf{Q}	Answer	Mark	Comments

2 (b)	makes one or more statements implying critical analysis and gives $3.24(\ldots) \%$ or 3.25% as final answer with all errors corrected or any correct method shown or makes two or more statements implying critical analysis and gives $3.24(\ldots) \%$ or 3.25% as final answer with no method shown statements of critical analysis 1. makes reference to the denominator, e.g. should be $\div 493$ (not 509) oe 2. recognises that the \% sign is placed incorrectly, e.g. should multiply 0.0314 by 100(\%) or should not put $\%$ sign after 0.0314 oe or allow $\times 100$ seen	B3	B2 makes two statements implying critical analysis and gives no or incorrect final answer or B2 gives $3.24(\ldots) \%$ or 3.25% as final answer with all errors corrected or any correct method shown and makes no statement implying critical analysis or B2 makes one statement implying critical analysis and gives $3.24(\ldots) \%$ or 3.25% as final answer with no method shown or B1 makes one statement implying critical analysis and gives no or incorrect final answer or B1 gives 3.24(...)\% or 3.25\% as final answer with no working and no statement implying critical analysis
	Additional Guidance		
	No critical analysis can score maximum B2		

\mathbf{Q}	Answer	Mark	Comments

2 (c) (i)	Alternative method 1 (Simon)		
	493 and 478 seen or $493-478$ (=15)	M1	
	15 and Yes	A1	
	Alternative method 2 (Simon)		
	[492, 495] and $[476,479]$ seen or $[492,495]-[476,479](=[13,19])$	M1	Two chosen numbers must be within the given range
	[13, 19] and Yes	A1	
	Alternative method 3 (Simon)		
	Wales is below 480 and all the others/England are above 490 and Yes	B2	B1 Wales is below 480 and all the others/England are above 490
	Additional Guidance		
	Right answer from wrong method scores MO AO e.g. $509-492=17$ and Yes. 509 is outside [492, 495] and 492 is outside [476, 479]		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

2 (c) (ii)	Alternative method 1 (Rukshana)		
	$\begin{aligned} & 493 \div 506(\times 100) \text { or }[0.97,0.9744] \text { or } \\ & {[97,97.44]} \\ & \text { or } \\ & 13 \div 506(\times 100) \text { or }[0.0256,0.03] \text { or } \\ & {[2.56,2.57]} \end{aligned}$	M1	oe
	$\text { their }[0.97,0.9744] \times 493$ or $493 \text { - their }[0.0256,0.03] \times 493$	M1	oe
	$\begin{aligned} & {[0.97,0.9744] \times 493=[478,481]} \\ & \text { and Yes } \\ & \text { or } \\ & 493-[0.0256,0.03] \times 493 \\ & =[478,481] \text { and Yes } \end{aligned}$	A1	
	Alternative method 2 (Rukshana)		
	$[492,495] \div[505,508](\times 100)$ or [0.968, 0.98] or [96.8, 98] or $[10,16] \div[505,508](\times 100)$ or [0.0196, 0.0317] or [1.96, 3.17]	M1	oe
	$\begin{array}{\|l} \hline \text { their }[0.968,0.98] \times[492,495] \\ \text { or } \\ {[492,495]-\text { their }[0.0196,0.0317]} \\ \times[492,495] \end{array}$	M1	oe
	$\begin{aligned} & {[0.968,0.98] \times[492,495]=[476,485)} \\ & \text { and Yes } \\ & \text { or } \\ & {[492,495]-[0.0196,0.0317]} \\ & \times[492,495]=[485,485.2] \text { and No } \end{aligned}$	A1	
	A	nal	uidan
	$[476,485) \rightarrow 476 \leq$ value <485		

Q	Answer	Mark	Comments
3(a)	$0,1.225$ or 1.23, 4.9, 19.6	B2	B1 One correct non-zero value

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{3} \mathbf{3 (c)}$	Draws a tangent at $d=15$	M1	
	Finds the gradient of their line by dividing	M 1	
	Obtains gradient in the range 15 to 19.5	A 1	

Q	Answer	Mark	Comments
3(d)	Reads value from the graph or solves equation $15=4.9 t^{2}$ or 1.75	M1	Reads value from the graph or solves equation
	$15 \div$ their 1.75	M1	Uses their time in the range 1.6 to 1.9
	Obtains speed in the range 8 to 9 .	A1	
Additional Guidance			
SC1 $19.6 \div 2=9.8$			
SC1 $20 \div 2=10$			

Q	Answer	Mark	Comments
4(a)	4	B1	

Q	Answer	Mark	Comments
4(b)	10	B1	

Q	Answer	Mark	Comments	
4(c)	$10=4 \mathrm{e}^{\mathrm{x}}$	$(x=) \ln 2.5$	M 1	
	$x=0.916$	ft their 4		
	Additional Guidance			
fl their 4				
SC1 $(4 \mathrm{e})^{x}=10$ giving $x=0.965$	A 1	Completely correct answer scores full marks		

Q	Answer	Mark	Comments
5(b)	Andrew travels 300 metres	B1	B1ft ft from their graph
	Emma travels 200 metres	B1	B1ft ft from their graph with negative gradient or $500-$ Andrew's

Q	Answer	Mark	Comments
6(a)	Changes speed to metres/second $\left(\times \frac{1000}{60 \times 60}\right)(=31 . i)$	M1	Seeing $\times \frac{1000}{60 \times 60}$ anywhere in their working
	$\begin{aligned} \text { Uses distance }= & \text { their speed } \times \text { time } \\ & (=31 . i \times 2) \end{aligned}$	M1	Must have attempted to express speed in ms^{-1}
	62.2 or 62	A1	
Additional Guidance			
SC2 for answer of 56 but only if from the following method (oe): $2 \div 60 \div 60=0.0005$ Then used $0.0005 \times 1000 \times 112=56$			

Q	Answer	Mark	Comments
6(b)(i)	The speed is zero or Traffic is not moving (at a standstill) or There is congestion	B1	

Q	Answer		Mark	Comments
6(b)(ii)	Alternative method 1			
	Uses $(15,112)$ and $(175,0)$ in $\frac{112-0}{15-175}$ to find A		M1	Accept $\frac{0-112}{175-15}$
	Uses their A in eqn to find B $112=($ their $-0.7 \times 15)+B$		M1	or $0=($ their $-0.7 \times 175)+B$
	$\mathrm{A}=-0.7 \text { or } \frac{-7}{10}$ and $\mathrm{B}=122.5 \text { or } \frac{245}{2}$		A1	accept $\mathrm{B}=123$ (3sf)
	Alternative method 2			
	Writes two eqns $\begin{aligned} 112 & =15 A+B \\ 0 & =175 A+B \end{aligned}$ and solves simultaneously to eliminate one unknown		M1	
	$112=-160 \mathrm{~A}$	$19600=160 B$		allow any multiple
	Uses their A in eqn to find B $112=($ their $-0.7 \times$ 15) $+B$	Uses their B in eqn to find A $112=15 \mathrm{~A}+\text { their }$ 122.5	M1	or or $0=($ their - $0=175 \mathrm{~A}+$ their $0.7 \times 175)+$ 122.5 B
	$A=-0.7 \text { or } \frac{-7}{10}$ and $\mathrm{B}=122.5 \text { or } \frac{245}{2}$		A1	Accept $B=123$ (3sf) Using (15, 112) Accept $A=-0.7 \dot{3}$ or $\frac{-11}{15}$ (from 123) Using (175, 0) Accept A = 0.703 from -0.7028571429 or $\frac{-123}{175}$ (from 123)
Additional Guidance				
$A=-0.64$ or $B=112$ generally gains 0 marks				

Q	Answer	Mark	Comments
6(b)(iii)	A is the change in speed (in km/h) when the density increases by 1 vehicle per km	or Bpendone "decrease in speed..."	
For every extra 1 vehicle per kilometre The speed decreases by - (their -0.7$)$ $k m / h$	Allow 'drops by' instead of decreases'.		

Q	Answer	Mark	Comments
6(b)(iv)	Uses their A (must be negative) and their B and writes or uses $\boldsymbol{q}=\text { their }-0.7 \boldsymbol{k}^{2}+\text { their } 122.5 \boldsymbol{k}$	M1	
	Substitutes $\boldsymbol{k}=87.5$ into their quadratic	M1	Uses half of 175, acknowledging symmetry of parabola. Do not accept using the linear model here. Condone k = 87 or 88
	q = 5360 (3 sf)	A1ft	from 5359.375
			if $B=123$ used Accept 5400 from 5403125
			if $A=-0.7 \dot{3}$ or $\frac{-11}{15}$ Accept 5150 from 5 147.916
			If $A=-0.703$ or $\frac{-123}{175}$ Accept 5380 from 5381.25
			FT their values for A (must be negative) and B

Q	Answer	Mark	Comments
6(b)(v)	Alternative Method 1		
	Uses their $\boldsymbol{v}=\mathrm{A} \boldsymbol{k}+\mathrm{B}$	M1	ft their A and B from part (b)(ii)
	$\begin{aligned} & \text { (their }-0.7 \times 87.5)+ \text { their } 122.5 \\ & =61.25 \end{aligned}$	A1ft	Condone k = 87 or 88 but no other values. ft their A and B from part (b)(ii) Accept 61.3 (3 sf) Accept 61.75 or 61.8 from 123 Accept 58.83 if -0.73 used Accept 61.5 if $\frac{-123}{175}$ or 61.5 (from 61.4875) if -0.703 used
	Alternative Method 2		
	Uses linear proportion from graph $1 / 2$ of $175=87.5$ so $1 / 2$ of their B	M1	ft their A and B from part (b)(ii)
	$=61.25$	A1ft	ft their A and B from part (b)(ii) Accept 61.3 (3 sf) or 61.5 if 123 used

Q	Answer	Mark	Comments		
$\mathbf{7 (a)}$	Positive	E1 It is an increasing function or The gradient is increasing or The gradient is positive	B1	oe	
:---					

Q	Answer	Mark	Comments
7(b)	Uses $(12,524)$ or $(0,260)$ and $(12,520)$	B1	
	$\begin{aligned} & 524=262 e^{12 Q} \\ & \text { Or } \\ & 520=260 e^{12 Q} \end{aligned}$	M1	Condone use of 520 and 262
	$2=\mathrm{e}^{12 Q}$ or $\frac{524}{262}=\mathrm{e}^{12 Q}$	M1	This gains the first three marks B1M1M1
	$\mathrm{In} 2=12 Q$	M1	
	$Q=\frac{1}{12} \ln 2(=0.05776 \ldots)=$.	A1	Must be from correct method

