AQA

Surname

Other Names
Centre Number \qquad
Candidate Number
Candidate Signature

Level 3 Certificate / Extended Certificate APPLIED SCIENCE

Unit 1 Key concepts in science Section C - Physics
ASC1P
Monday 11 June 2018 Afternoon
Time allowed: 1 hour 30 minutes.
You are advised to spend approximately 30 minutes on this section.

For this paper you must have:

- a calculator
- formulae sheet.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in each section.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- You will be provided with a copy of the formulae sheet.
- There are three sections in this paper:

SECTION A - Biology
SECTION B - Chemistry
SECTION C - Physics.

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60 and the maximum mark for this section is 20.

ADVICE

Read each question carefully.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION C - PHYSICS

Answer ALL questions in this section.

A student wants to measure the acceleration due to gravity of a steel ball.

FIGURE 1 shows the equipment the student plans to use.
FIGURE 1

\section*{| 0 | 1.1 |
| :--- | :--- | Name the energy the steel ball has before it is released. [1 mark]}

\qquad
\qquad

0	1.	2
Explain why the steel ball remains stationary		

In your explanation, include the forces involved. [2 marks]
[Turn over]

| 0 | 1.3 | 3 |
| :--- | :--- | :--- | 0.60 m .

The time taken for the steel ball to fall between the light gates was 0.351 s .

Calculate the AVERAGE speed of the steel ball as it travelled between the light gates. [1 mark]

Average speed $=$ $\mathrm{m} \mathrm{s}^{-1}$

| 0 | 1.4 | Calculate the acceleration due to gravity of the |
| :--- | :--- | :--- | steel ball.

Assume the speed of the steel ball at the first light gate is $0 \mathrm{~m} \mathrm{~s}^{-1}$
State the correct unit in your answer. [3 marks]

Acceleration due to gravity = \qquad
Unit $=$ \qquad
\qquad
1
\qquad
\qquad
2

[Turn over]

| 0 | 1 | 6 |
| :--- | :--- | :--- | ball to be $3.7 \mathrm{~m} \mathrm{~s}^{-1}$ just before it hits the pad.

The mass of the steel ball is $0.060 \mathbf{k g}$.
Calculate the kinetic energy of the steel ball just before it hits the pad. [2 marks]

Kinetic energy $=\ldots$ J

| 0 | 1 | .7 |
| :--- | :--- | :--- | The steel ball exerts a force on the pad when it hits it.

Explain why.

Use ONE of Newton's Laws of Motion in your explanation. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

\section*{| 0 | 2 |
| :--- | :--- | A product design engineer measures the temperature of a hot drink as it cools in a cup.}

TABLE 1 shows the engineer's results.

TABLE 1

Time $/$ minutes	0	10	20	30	40	50	60
Temperature $/{ }^{\circ} \mathrm{C}$	88	54	39	30	24	23	23

0.2. 1 Plot a graph of the values in TABLE 1 on

 FIGURE 2.Draw a line of best fit. [2 marks]
FIGURE 2

Temperature $/{ }^{\circ} \mathrm{C}$

[Turn over]

| 0 | 2 | 2 |
| :--- | :--- | :--- | The engineer wants to calculate the U-value of the material the cup is made from.

State what is meant by the term U-value of a material. [1 mark]

| 0 | 2 |
| :--- | :--- | :--- | $\mathbf{3}$ When the hot drink has a temperature of $88^{\circ} \mathrm{C}$, the drink loses 58 J of heat in 1 second.

The temperature of the room is $23^{\circ} \mathrm{C}$.
The total surface area of the cup is $0.050 \mathrm{~m}^{2}$
Calculate the U-value of the material the cup is made from. [2 marks]

$$
\text { U-value }=\ldots W^{-2}{ }^{\circ} \mathrm{C}^{-1}
$$

[Turn over]

| 0 | 2 | 4 |
| :--- | :--- | :--- | thermal transfer.

Suggest TWO examples where thermal transfer should be maximised. [2 marks]

1

2
\qquad
\qquad
7
END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

For Examiner's Use	
Question	Mark
1	
2	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

IB/M/Jun18/NC/ASC1P/E2

