AQA

Surname \qquad
Other Names \qquad
Centre Number \qquad
Candidate Number \qquad
Candidate Signature \qquad

GCSE

CHEMISTRY

Foundation Tier Paper 1

8462/1F

Thursday 17 May 2018 Morning
Time allowed: 1 hour 45 minutes
For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- There are $\mathbf{1 0 0}$ marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

\section*{| 0 | 1 |
| :--- | :--- |\quad This question is about mixtures.}

| 0 | 1 | 1 |
| :--- | :--- | :--- | Substances are separated from a mixture using different methods.

Draw ONE line from each substance and mixture to the best method of separation. [3 marks]

Substance and mixture
 Method of separation

Ethanol from ethanol and water

Chromatography

Crystallisation

Electrolysis

Filtration

The different colours in black ink

Fractional distillation

0	1	2
A student filters a mixture.		

FIGURE 1 shows the apparatus.

FIGURE 1

Suggest ONE improvement to the apparatus.
[1 mark]
[Turn over]

0	1	3
3	Complete the sentences.	

Choose answers from the list below. [2 marks]

- condense
- evaporate
- freeze
- melt
- solidify

In simple distillation, the mixture is heated to
make the liquid \qquad .

The vapour is then cooled to make it

FIGURE 2 shows the arrangement of atoms in a pure metal and in a mixture of metals.

FIGURE 2

Pure metal

Metal A

Mixture of metals

0	1	.4
Calculate the percentage of metal B atoms in		

[2 marks]
\qquad
\qquad
\qquad

Percentage of metal B atoms $=$ \qquad \%
[Turn over]

\section*{| 0 | 1. | 5 What is a mixture of metals called? [1 mark] |
| :--- | :--- | :--- |}

Tick ONE box.

An alloy

A compound

A molecule

A polymer

Repeat of FIGURE 2

Pure metal

Mixture of metals

0	1	6
6		

Tick ONE box.

The atoms in the mixture are different shapes.

The layers in the mixture are distorted.

The layers in the mixture slide more easily.

The mixture has a giant structure.
[Turn over]

| 0 | 1. | 7 |
| :--- | :--- | :--- | A nanoparticle of pure metal A is a cube.

Each side of the cube has a length of $\mathbf{2 0} \mathbf{n m}$.
FIGURE 3 shows the cube.
FIGURE 3

What is the volume of the nanoparticle? [1 mark]

Tick ONE box.

$20 \mathrm{~nm}^{3}$

$60 \mathrm{~nm}^{3}$

8000 nm 3
[Turn over]

| 0 | 2 |
| :--- | :--- | :--- |\quad The halogens are elements in Group 7.

0	2	1
1		

Give the number of electrons in the outer shell of a bromine atom. [1 mark]

0	2	2
Bromine reacts with hydrogen. The gas		

What is the structure of hydrogen bromide? [1 mark]

Tick ONE box.

Giant covalent

Ionic lattice

Metallic structure

Small molecule

F_{2}

F^{2}

2F
[Turn over]

A student mixes solutions of halogens with solutions of their salts.

TABLE 1 shows the student's observations.

TABLE 1

	Potassium chloride (colourless)	Potassium bromide (colourless)	Potassium iodide (colourless)
Chlorine (colourless)		Solution turns orange	Solution turns brown
Bromine (orange)	No change		Solution turns brown
lodine (brown)	No change	No change	

0	2.	.4
Explain how the reactivity of the halogens		

Use the results in TABLE 1 on page 14. [3 marks]
[Turn over]

A company uses chlorine to produce titanium chloride from titanium dioxide.

| 0 | 2 | 5 | What is the relative formula mass $\left(M_{r}\right)$ of |
| :--- | :--- | :--- | :--- | titanium dioxide, TiO_{2} ?

Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{O}=16 \quad \mathrm{Ti}=48$
[1 mark]
Tick ONE box.

80

128

| 0 | 2.6 |
| :--- | :--- | :--- | titanium dioxide should produce 1.2 kg of titanium chloride.

However, the company finds that 500 g of titanium dioxide only produces $\mathbf{9 0 0} \mathbf{g}$ of titanium chloride.

Calculate the percentage yield. [2 marks]

> Percentage yield = \%
[Turn over]

| 0 | 3 |
| :--- | :--- | :--- | This question is about the structure of the atom.

0	3	1
1	Complete the sentences.	

Choose answers from the list below.
Each word may be used once, more than once, or not at all. [5 marks]

- electron
- ion
- neutron
- nucleus
- proton

The centre of the atom is the

The two types of particle in the centre of the atom are the proton and the

James Chadwick proved the existence of the
\qquad -

Niels Bohr suggested particles orbit the centre of the atom. This type of particle is the

The two types of particle with the same mass are the neutron and the

[Turn over]

TABLE 2 shows information about two isotopes of element X.

TABLE 2

	Mass number	Percentage (\%) abundance
Isotope 1	63	70
Isotope 2	65	30

0	3	2 Calculate the relative atomic mass $\left(A_{r}\right)$ of element X using the equation:

$A_{r}=\frac{(\text { mass number } \times \text { percentage }) \text { of isotope } 1+(\text { mass number } \times \text { percentage }) \text { of isotope } 2}{100}$
Use TABLE 2 on page 20.
Give your answer to 1 decimal place. [2 marks]
\qquad
\qquad
\qquad
$A_{r}=$
[Turn over]

BLANK PAGE

0	3	3

Use the periodic table. [1 mark]

Element X is

0	3	4

$$
1.2 \times 10^{-10} \mathrm{~m}
$$

The radius of the centre of the atom is $\frac{1}{10000}$ the radius of the atom.

Calculate the radius of the centre of an atom of element X.

Give your answer in standard form. [2 marks]
\qquad
\qquad
\qquad
\qquad

Radius = m

[Turn over]

| 0 | 4 | A student investigated the electrolysis of |
| :--- | :--- | :--- | sodium chloride solution.

FIGURE 4 shows the apparatus.
FIGURE 4

The student measured the volume of gas collected in each measuring cylinder every minute for $\mathbf{2 0}$ minutes.

0	4	1
FIGURE 5	shows the volume of hydrogen gas	

FIGURE 5

What is the volume of hydrogen gas collected? [1 mark]
\qquad
Volume $=$
[Turn over]

FIGURE 6 shows the results of the investigation.

FIGURE 6

```
Volume
of gas
collected
in cm}\mp@subsup{}{}{3
```


Time in minutes

| 0 | 4 | .2 |
| :--- | :--- | :--- | Which of the lines on FIGURE 6 , on page 26, show that the volume of gas collected is directly proportional to the time? [1 mark]

Tick ONE box.

Both lines

Chlorine line only

Hydrogen line only

Neither line

[Turn over]

Repeat of FIGURE 6

Volume
of gas
collected
in cm^{3}
10

Time in minutes

| 0 | 4 | .3 |
| :--- | :--- | :--- | show a positive correlation between the volume of gas collected and time? [1 mark]

Tick ONE box.

Both lines

Chlorine line only

Hydrogen line only

Neither line

[Turn over]

A teacher demonstrates the electrolysis of different substances using graphite electrodes.

FIGURE 7 shows the apparatus used.

FIGURE 7

| 0 | 4 | 4 |
| :--- | :--- | :--- | Why can graphite conduct electricity? [1 mark]

Tick ONE box.

Graphite exists in layers of atoms.

Graphite has a giant structure.

Graphite has a high melting point.

Graphite has delocalised electrons.
[Turn over]

0	4	5

- molten zinc chloride
- potassium bromide solution.

Complete TABLE 3 on page 33 to predict the products.

Choose answers from the list below. [4 marks]

- chlorine
- bromine
- hydrogen
- oxygen
- potassium
- zinc

TABLE 3

Substance electrolysed	Product at cathode (negative electrode)	Product at anode (positive electrode)
Molten zinc chloride		
Potassium bromide solution		

[Turn over]

| 0 | 5 | A student investigated the mass of copper oxide |
| :--- | :--- | :--- | produced by heating copper carbonate.

This is the method used.

1. Weigh an empty test tube.
2. Weigh 2.00 g of copper carbonate into the test tube.
3. Heat the copper carbonate until there appears to be no further change.
4. Re-weigh the test tube and copper oxide produced.
5. Subtract the mass of the empty tube to find the mass of copper oxide.
6. Repeat steps 1-5 twice.
7. Repeat steps 1-6 with different masses of copper carbonate.

TABLE 4, on page 35, shows the student's results.

TABLE 4

Mass of copper carbonate in g	Mass of copper oxide in g			
	Trial 1	Trial 2	Trial 3	Mean
2.00	1.29	1.27	1.31	1.29
4.00	2.89	2.57	2.59	2.58
6.00	3.85	3.90	3.87	3.87
8.00	5.12	5.15	5.09	X
10.00	6.42	6.45	6.45	6.44

The equation for the reaction is:
$\mathrm{CuCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CuO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

| 0 | 5 | 1 |
| :--- | :--- | :--- | Complete the sentence. [1 mark]

The state symbol shows carbon dioxide is a
\qquad
[Turn over]

Repeat of TABLE 4

Mass of copper carbonate in g	Mass of copper oxide in g			
	Trial 1	Trial 2	Trial 3	Mean
2.00	1.29	1.27	1.31	1.29
4.00	2.89	2.57	2.59	2.58
6.00	3.85	3.90	3.87	3.87
8.00	5.12	5.15	5.09	X
10.00	6.42	6.45	6.45	6.44

| 0 | 5. | 2 |
| :--- | :--- | :--- | Why do the contents of the test tube lose mass in the investigation? [1 mark]

| 0 | 5 | 3 |
| :--- | :--- | :--- | page 36. [1 mark]

\qquad
\qquad
$X=$ g

| 0 | 5.4 |
| :--- | :--- | :--- | One of the results in TABLE 4, on page 36, is anomalous.

Which result is anomalous? [1 mark]
Mass of copper carbonate g

Trial \qquad
[Turn over]

BLANK PAGE

Another student repeated the investigation using magnesium carbonate instead of copper carbonate.

The word equation for the reaction is:
magnesium carbonate \rightarrow
magnesium oxide + carbon dioxide
FIGURE 8, on page 40, shows the results of the investigation.
[Turn over]

FIGURE 8
Mass of magnesium oxide in g

| 0 | 5 | 6 Draw a line of best fit on FIGURE 8 on page 40. |
| :--- | :--- | :--- | [1 mark]

| 0 | 5 | 7 Determine the mass of magnesium oxide |
| :--- | :--- | :--- | produced by 8.4 g of magnesium carbonate.

Use FIGURE 8 on page 40. [1 mark]
Mass = g

| 0 | 5 | 8 Calculate the mass of magnesium oxide |
| :--- | :--- | :--- | produced when 168 g of magnesium carbonate is heated.

Use your answer to Question 05.7 [2 marks]
\qquad
\qquad
\qquad

Mass of magnesium oxide produced =

| 0 | 6 | A student investigated the temperature change |
| :--- | :--- | :--- | in displacement reactions between metals and copper sulfate solution.

This is the method used.

1. Measure $50 \mathrm{~cm}^{3}$ of the copper sulfate solution into a polystyrene cup.
2. Record the starting temperature of the copper sulfate solution.
3. Add the metal and stir the solution.
4. Record the highest temperature the mixture reaches.
5. Calculate the temperature increase for the reaction.
6. Repeat steps $1 \mathbf{- 5}$ with different metals.

| 0 | 6 | 1 |
| :--- | :--- | :--- | name of the variable in the investigation. [2 marks]

Type of variable

Dependent variable

Independent

 variable
Temperature change

Name of variable in the investigation

Concentration of solution

Particle size of solid

Type of metal

Volume of solution

| 0 | 6.2 |
| :--- | :--- | :--- | NOT a glass beaker.

Why did this make the investigation more accurate? [1 mark]

Tick ONE box.

Glass is breakable

Glass is transparent

Polystyrene is a better insulator

Polystyrene is less dense

BLANK PAGE

[Turn over]

TABLE 5 shows the student's results.

TABLE 5

Metal	Temperature increase in
Magnesium	38
Nickel	8
Zinc	16

\section*{| 0 | 6 | 3 |
| :--- | :--- | :--- |}

Use data from TABLE 5 on page 46. [2 marks] FIGURE 9

Temperature increase in ${ }^{\circ} \mathrm{C}$

Metal

[Turn over]

| 0 | 6.4 | The student concluded that the reactions |
| :--- | :--- | :--- | between the metals and copper sulfate solution are endothermic.

Give ONE reason why this conclusion is NOT correct. [1 mark]

| 0 | 6 | 5 |
| :--- | :--- | :--- | reactivity of the metal.

Write the metals magnesium, nickel and zinc in order of reactivity.

Use TABLE 5 on page 46. [1 mark]
Most reactive \qquad

Least reactive \qquad

49

0	6	6

Describe a method to find the position of Y in the reactivity series in Question 06.5 [3 marks]

\qquad
[Turn over]

FIGURE 10 shows the reaction profile for the reaction between zinc and copper sulfate solution.

FIGURE 10

Energy

Progress of reaction

\section*{| 0 | 6.7 | Which letter represents the products of the |
| :--- | :--- | :--- | reaction? [1 mark]}

Tick ONE box.

[Turn over]

Repeat of FIGURE 10

Energy

\section*{| 0 | 6 | 8 | Which letter represents the activation energy? |
| :--- | :--- | :--- | :--- | [1 mark]}

Tick ONE box.

A

B

C

D

E
[Turn over]

0	7	This question is about elements in Group 1.

A teacher burns sodium in oxygen.

| 0 | 7.1 | Complete the word equation for the reaction. |
| :--- | :--- | :--- | [1 mark]

sodium + oxygen \rightarrow

0	7	2
What is the name of this type of reaction?		

Tick ONE box.

Decomposition

Electrolysis

Oxidation

Precipitation

\section*{| 0 | 7. | 3 |
| :--- | :--- | :--- | The teacher dissolves the product of the reaction in water and adds universal indicator.}

The universal indicator turns purple.
What is the pH value of the solution? [1 mark]
Tick ONE box.

| 0 | 7.4 |
| :--- | :--- | :--- | The solution contains a substance with the formula NaOH

Give the name of the substance. [1 mark]
[Turn over]

0	7.	5
All alkalis contain the same ion.		

What is the formula of this ion? [1 mark]

Tick ONE box.

Na^{+}

OH^{-}

0	7.	6
A solution of NaOH had a concentration of		

What mass of NaOH would there be in $250 \mathrm{~cm}^{3}$ of the solution? [2 marks]
\qquad
\qquad
\qquad

Mass = g
[Turn over]

| 0 | 7. | 7 |
| :--- | :--- | :--- | The melting points of the elements in Group 1 show a trend.

TABLE 6 shows the atomic numbers and melting points of the Group 1 elements.

TABLE 6

Element	Atomic number	Melting point in ${ }^{\circ} \mathrm{C}$
Lithium	3	181
Sodium	11	98
Potassium	19	63
Rubidium	37	X
Caesium	55	29

Plot the data from TABLE 6 on FIGURE 11 on page 59. [2 marks]

FIGURE 11

Melting point

 in ${ }^{\circ} \mathrm{C}$ 200 180160

[Turn over]

BLANK PAGE

| 0 | 7. | 8 Predict the melting point, X, of rubidium, atomic |
| :--- | :--- | :--- | number 37

Use FIGURE 11 on page 59. [1 mark]

Melting point $=$ ${ }^{\circ} \mathrm{C}$

BLANK PAGE

| 0 | 8 | Soluble salts are formed by reacting metal |
| :--- | :--- | :--- | oxides with acids.

0	8	1
1	Give ONE other type of substance that can	

Give the formula of calcium nitrate. [1 mark]
[Turn over]

| 0 | 8 | 3 |
| :--- | :--- | :--- | of magnesium sulfate from a metal oxide and a dilute acid. [6 marks]

\qquad

0 This question is about metals and metal compounds.

0.9 .1 Iron pyrites is an ionic compound.

FIGURE 12 shows a structure for iron pyrites.
FIGURE 12

KEY

Determine the formula of iron pyrites.
Use FIGURE 12. [1 mark]

| 0 | 9 | 2 |
| :--- | :--- | :--- | An atom of iron is represented as ${ }_{26}^{56} \mathrm{Fe}$

Give the number of protons, neutrons and electrons in this atom of iron. [3 marks]

Number of protons \qquad
Number of neutrons \qquad
Number of electrons \qquad

0	9	3	Iron is a transition metal.

Sodium is a Group 1 metal.
Give TWO differences between the properties of iron and sodium. [2 marks]

1 \qquad
\qquad
\qquad
2
\qquad
\qquad
[Turn over]

Nickel is extracted from nickel oxide by reduction with carbon.

| 0 | 9.4 | Explain why carbon can be used to extract |
| :--- | :--- | :--- | nickel from nickel oxide. [2 marks]

\qquad
\qquad
\qquad
\qquad

| 0 | 9 | 5 |
| :--- | :--- | :--- | An equation for the reaction is:

$\mathrm{NiO}+\mathrm{C} \rightarrow \mathrm{Ni}+\mathrm{CO}$

Calculate the percentage atom economy for the reaction to produce nickel.

Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{C}=12 \quad \mathrm{Ni}=59$
Relative formula mass $\left(M_{\mathrm{r}}\right): \quad \mathrm{NiO}=\mathbf{7 5}$
Give your answer to 3 significant figures.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Percentage atom economy = \%
[Turn over]

1	0
Chemical reactions can produce electricity.	

1	0.	1
FIGURE 13		
shows a simple cell.		

FIGURE 13

Which of these combinations would NOT give a zero reading on the voltmeter in FIGURE 13? [1 mark]

Tick ONE box.

$\left.$| | Electrode
 A | Electrode
 B | Electrolyte |
| :--- | :--- | :--- | :--- |
| \square | | Copper | Copper | | Sodium chloride |
| :--- |
| solution | \right\rvert\,

[Turn over]

Alkaline batteries are non-rechargeable.

| 1 | 0.2 | 2 |
| :--- | :--- | :--- | working? [1 mark]

1	0	3
3		

Hydrogen fuel cells and rechargeable lithium-ion batteries can be used to power electric cars.

1	0	.4
4	Complete the balanced equation for the overall	

[Turn over]

1	0.5	5
TABLE		
7	shows data about different ways to	

TABLE 7

	Hydrogen fuel cell	Rechargeable lithium-ion battery
Time taken to refuel or recharge in minutes	5	30
Distance travelled before refuelling or recharging in miles	Up to 415	Up to 240
Distance travelled per unit of energy in km	22	66
Cost of refuelling or recharging in $£$	50	3
Minimum cost of car in $£$	60000	18000

Evaluate the use of hydrogen fuel cells compared with rechargeable lithium-ion batteries to power electric cars.

Use TABLE 7 and your own knowledge. [6 marks]

[Turn over]

\qquad
\qquad

\longrightarrow| |
| :---: |
| 11 |

END OF QUESTIONS 11

There are no questions printed on this page

There are no questions printed on this page.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

IB/M/Jun18/LO/8462/1F/E3

78

