AQAE

Surname

Other Names
Centre Number
Candidate Number
Candidate Signature

GCSE
 CHEMISTRY

Foundation Tier Paper 1
8462/1F
Thursday 16 May 2019
Morning
Time allowed: 1 hour 45 minutes
For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided. Do not write on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

0	1	This question is about atomic structure.

FIGURE 1 represents an atom of element Z. FIGURE 1

\section*{| 0 | 1. | 1 Name the parts of the atom labelled A and $B . ~$ |
| :--- | :--- | :--- |}

Choose answers from the list below.
[2 marks]

- electron
- neutron
- nucleus
- proton

A

B

0	1.2	Which particle has the lowest mass?

Choose the answer from the list below. [1 mark]

- electron
- neutron
- nucleus
- proton
[Turn over]

REPEAT OF FIGURE 1

| 0 | 1 | .3 Which group of the periodic table contains |
| :--- | :--- | :--- | element Z?

Use FIGURE 1, on page 6. [1 mark]

Group

| 0 | 1. | 4 |
| :--- | :--- | :--- | number of element Z.

Use FIGURE 1.
Choose answers from the box. [2 marks]

1	5	6	11	16

Atomic number \qquad
Mass number
[Turn over]

Bromine has two different types of atom.

The atoms have a different number of neutrons but the same number of protons.

0	1.	5
5		

Tick (\checkmark) ONE box.

Compound

Ion

Isotope

Molecule

| 0 | 1.6 |
| :--- | :--- | represented as ${ }_{35}^{79} \mathrm{Br}$ and ${ }_{35}^{81} \mathrm{Br}$

The relative atomic mass $\left(A_{r}\right)$ of bromine is $\mathbf{8 0}$
Which statement is true about the number of each type of atom in bromine? [1 mark]

Tick (\checkmark) ONE box.

There are fewer ${ }_{35}^{79} \mathrm{Br}$ atoms than ${ }_{35}^{81} \mathrm{Br}$ atoms.

There are more ${ }_{35}^{79} \mathrm{Br}$ atoms than ${ }_{35}^{81} \mathrm{Br}$ atoms.
$\square \begin{aligned} & \text { There are the same number of }{ }_{35}^{79} \mathrm{Br} \\ & \text { atoms and }{ }_{35}^{81} \mathrm{Br} \text { atoms. }\end{aligned}$

[Turn over]

| 0 | 2 |
| :--- | :--- | This question is about compounds of oxygen and hydrogen.

FIGURE 2 represents the structure of hydrogen peroxide.

FIGURE 2

$$
\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}
$$

| 0 | 2.1 | What is the correct formula of hydrogen |
| :--- | :--- | :--- | peroxide? [1 mark]

Tick (\checkmark) ONE box.

H2O2

HO_{2}

$\mathrm{H}^{2} \mathrm{O}^{2}$

$\mathrm{H}_{2} \mathrm{O}_{2}$

\section*{| 0 | 2 |
| :--- | :--- | .2 Which type of bonding is shown in FIGURE 2? [1 mark]}

Tick (\checkmark) ONE box.

Covalent

 Ionic

Metallic

0	2	3
3	$H y d r o g e n ~ p e r o x i d e ~ d e c o m p o s e s ~ i n ~ t h e ~$	

Which elements are often used as catalysts? [1 mark]

Tick (\checkmark) ONE box.

Alkali metals
 Halogens

Transition metals
[Turn over]

FIGURE 3 shows the reaction profile for the decomposition of hydrogen peroxide.

The word equation for this reaction is: hydrogen peroxide \rightarrow water + oxygen

FIGURE 3

Progress of reaction

Labels A, B, C and D each represent a different part of the reaction profile.

Use FIGURE 3 to answer Questions 02.4 and 02.5

\section*{| 0 | 2.4 | Which label shows the activation energy? |
| :--- | :--- | :--- |} [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D

\section*{| 0 | 2. | 5 |
| :--- | :--- | :--- | Which label shows the energy of hydrogen peroxide? [1 mark]}

Tick (\checkmark) ONE box.

B

C

D

[Turn over]

| 0 | 2 | 6 |
| :--- | :--- | :--- | out energy to the surroundings.

What type of reaction is this? [1 mark]
Tick (\checkmark) ONE box.

Displacement

Endothermic

Exothermic

Neutralisation

022 . 7 Hydrogen and oxygen form water.
A hydrogen atom contains one electron.
An oxygen atom contains six electrons in the outer shell.

Complete FIGURE 4 to show a dot and cross diagram for a water molecule.

Show the outer electrons only. [2 marks]
FIGURE 4

[Turn over]

| 0 | 3 | This question is about elements, compounds |
| :--- | :--- | :--- | and mixtures.

FIGURE 5 shows five different substances, A, B, C, D and E.
\bigcirc and - represent atoms of different elements.
FIGURE 5

Use FIGURE 5 to answer Questions 03.1 to 03.3

\section*{| 0 | 3 | 1 |
| :--- | :--- | :--- |
| 1 | | | Which substance is only one compound?} [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D

E

[Turn over]

REPEAT OF FIGURE 5

| 0 | 3 | 2 |
| :--- | :--- | :--- | Which substance is a mixture of elements?

[1 mark]
Tick (\checkmark) ONE box.

B

C

D

E

\section*{| 0 | 3 | 3 |
| :--- | :--- | :--- | and a compound? [1 mark]}

Tick (\checkmark) ONE box.

A

B

C

D

E

[Turn over]

Substances are separated from a mixture using different methods.

| 0 | 3.4 | Draw ONE line from each method of |
| :--- | :--- | :--- | separation to the substance and mixture it would separate. [2 marks]

Method of separation
chromatography

Substance and mixture
blue food colour from a mixture of food colours
copper from an alloy of copper and zinc
copper sulfate from copper sulfate solution

crystallisation

0 3. 5 Sand does not dissolve in water. A student separates a mixture of sand and water by filtration.

Draw a diagram of the apparatus the student could use. You should label:

- where the sand is collected
- where the water is collected.
[3 marks]

DIAGRAM

[Turn over]

\section*{| 0 | 3 | 6 |
| :--- | :--- | :--- | A student distils a sample of salt solution to produce pure water.}

FIGURE 6 shows the apparatus.
FIGURE 6

What temperature would you expect the thermometer to show? [1 mark]

Tick (\checkmark) ONE box.

$10^{\circ} \mathrm{C}$

$50^{\circ} \mathrm{C}$

$100^{\circ} \mathrm{C}$
[Turn over]

REPEAT OF FIGURE 6

03 . 7 Describe how the process of distillation shown in FIGURE 6, on page 24, produces pure water from salt solution. [4 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 4 | This question is about chemical cells and |
| :--- | :--- | :--- | batteries.

A student investigated the voltage produced by different chemical cells.

FIGURE 7 shows the apparatus.
FIGURE 7

This is the method used.

1. Use cobalt metal as electrode X.
2. Record the cell voltage.
3. Repeat steps $\mathbf{1}$ and 2 using different metals as electrode \mathbf{X}.

\section*{| 0 | 4 | 1 |
| :--- | :--- | :--- |
| Suggest TWO variables the student should | | | keep the same to make the investigation valid. [2 marks]}

1
\qquad
\qquad
2
\qquad
[Turn over]

TABLE 1 shows the student's results.

TABLE 1

Electrode X	Voltage of the cell in volts
cobalt	0.62
magnesium	2.71
zinc	1.10

\section*{| 0 | 4 | 2 |
| :--- | :--- | :--- | Write the three metals used for electrode X in order of reactivity.
 Use TABLE 1. [1 mark]}

Most reactive \qquad
\qquad
Least reactive

| 0 | 4 | 3 |
| :--- | :--- | :--- | Copper is used as electrode X in FIGURE 7, on page 26.

Predict the voltage of this cell.
Give ONE reason for your answer. [2 marks]
Voltage $=$ volts

Reason \qquad
\qquad

0	4.	4
Describe how to make a 12 V battery using		

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">4</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">5</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 4 | 5 |
| :--- | :--- | :--- |</table-markdown></div> Which is the most suitable use for a non-rechargeable cell? [1 mark]

Tick (\checkmark) ONE box.

Electric toy

Laptop computer

Mobile phone
0.4 . 6 Hydrogen fuel cells or rechargeable cells can be used to power electric vehicles.

Suggest ONE advantage and ONE disadvantage of using a hydrogen fuel cell compared with a rechargeable cell. [2 marks]

Advantage of hydrogen fuel cell

Disadvantage of hydrogen fuel cell

[Turn over]

| 0 | 5 | A student investigated the reaction between |
| :--- | :--- | :--- | lumps of calcium carbonate and dilute hydrochloric acid.

This is the method used.

1. Pour $100 \mathrm{~cm}^{3}$ of dilute hydrochloric acid into a conical flask.
2. Place the conical flask on a balance.
3. Add 2 g of calcium carbonate lumps to the conical flask.
4. Wait until the calcium carbonate stops reacting.
5. Record the decrease in mass of the conical flask and contents.
6. Repeat steps $\mathbf{1}$ to $\mathbf{5}$ three more times.

The equation for the reaction is:

$$
\mathrm{CaCO}_{3}(\mathrm{X})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

\section*{| 0 | 5 | 1 |
| :--- | :--- | :--- |
| 1 | | | What is the state symbol X in the equation? [1 mark]}

Tick (\checkmark) ONE box.

aq

g

I

\mathbf{S}
[Turn over]

TABLE 2 shows the student's results.

TABLE 2

	Result 1	Result 2	Result 3	Result 4
Decrease in mass of the conical flask and contents in g	0.84	0.79	0.86	0.47

| 0 | 5 | 2 |
| :--- | :--- | :--- | Why does the mass of the conical flask and contents decrease during the reaction? [1 mark]

Tick (\checkmark) ONE box.

A gas escapes.

A new solution is made.

The dilute hydrochloric acid is used up.

The calcium carbonate lumps decrease in size.

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">5</td>
<td style="text-align: left; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">3</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 5 | 3 |
| :--- | :--- | :--- |</table-markdown></div> What is the range of the four results in TABLE 2? [1 mark]

From \qquad g to g

| 0 | 5 | 4 Calculate the mean decrease in mass of the |
| :--- | :--- | :--- | conical flask and contents.

Do NOT include the anomalous result.
Use TABLE 2. [2 marks]
\qquad
\qquad
\qquad

Mean decrease in mass = g
[Turn over]

A teacher demonstrated the investigation.
The teacher used different masses of calcium carbonate.
FIGURE 8 shows the teacher's results.
FIGURE 8
Decrease in mass of the conical flask and contents in \mathbf{g}

\section*{| 0 | 5. | 5 What type of variable is the mass of calcium |
| :--- | :--- | :--- | carbonate? [1 mark]}

Tick (\checkmark) ONE box.

Control

Dependent

Independent

Use FIGURE 8 to answer Questions 05.6 and 05.7

0	5.6	Complete the sentence. [1 mark]

As the mass of calcium carbonate used increases, the decrease in mass of the conical flask and contents \qquad .

| 0 | 5 | 7 |
| :--- | :--- | :--- | flask and contents when a 3 g sample of calcium carbonate is used? [1 mark]

Decrease in mass $=$ \qquad g

[Turn over]

| 0 | 6 | This question is about the extraction of |
| :--- | :--- | :--- | metals.

0	6.1	Tungsten is a metal.

The symbol of tungsten is W
Tungsten is produced from tungsten oxide by reaction with hydrogen.

The equation for the reaction is:
$\mathrm{WO}_{3}+3 \mathrm{H}_{2} \rightarrow \mathrm{~W}+3 \mathrm{H}_{2} \mathrm{O}$
Calculate the percentage atom economy when tungsten is produced in this reaction.

Use the equation:
percentage atom economy =

$$
\frac{184}{\left(M_{\mathrm{r}} \mathrm{WO}_{3}\right)+\left(3 \times M_{\mathrm{r}} \mathrm{H}_{2}\right)} \times 100
$$

Relative formula masses

$$
\left(M_{r}\right): \quad W O_{3}=232 \quad H_{2}=2
$$

[2 marks]

Percentage atom economy = \%

[Turn over]

Aluminium is extracted from aluminium oxide.

0	6	2

Calculate the mass of aluminium oxide in 40 kg of the rock sample. [2 marks]

Mass of aluminium oxide $=$

0.6 . 3 The formula of aluminium oxide is $\mathrm{Al}_{2} \mathrm{O}_{3}$

Calculate the relative formula mass (M_{r}) of aluminium oxide.

Relative atomic masses $\left(A_{\mathrm{r}}\right)$: $\mathbf{O = 1 6 \quad \mathrm { Al } = 2 7}$
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Relative formula mass $\left(M_{r}\right)=$
[Turn over]

| 0 | 6.4 | 60.0 kg of aluminium oxide produces a |
| :--- | :--- | :--- | maximum of 31.8 kg of aluminium.

In an extraction process only $28.4 \mathbf{k g}$ of aluminium is produced from 60.0 kg of aluminium oxide.

Calculate the percentage yield.
Give your answer to 3 significant figures.
Use the equation:
percentage yield $=$
mass of product actually made
maximum theoretical mass of product
$\times 100$
[3 marks]

43

Percentage yield $=$

[Turn over]

006.5 Extracting metals by electrolysis is a very expensive process.

Explain why aluminium is extracted using electrolysis and not by reduction with carbon. [2 marks]
\qquad
\qquad

| 0 | 7 | This question is about energy changes in |
| :--- | :--- | :--- | reactions.

0	7.1	Ammonium nitrate dissolves in water.

The change is endothermic.
Which piece of equipment uses this change?
[1 mark]
Tick (\checkmark) ONE box.

Hand warmer

Self-heating can

Sports injury pack
[Turn over]

A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution.

This is the method used.

1. Measure $25 \mathrm{~cm}^{3}$ of potassium hydroxide solution into a glass beaker.
2. Add $5 \mathrm{~cm}^{\mathbf{3}}$ of dilute sulfuric acid.
3. Stir the solution.
4. Measure the temperature of the solution.
5. Repeat steps 2 to 4 until a total of $30 \mathrm{~cm}^{3}$ of dilute sulfuric acid has been added.

0	7.2
FIGURE 9, on the opposite page, shows part of	

The student wanted to measure the temperature to a resolution of $0.1^{\circ} \mathrm{C}$

Which thermometer should the student use? [1 mark]

Tick (\checkmark) ONE box on the opposite page.

FIGURE 9

[Turn over]

| 0 | 7.3 | Energy is lost to the surroundings during the |
| :--- | :--- | :--- | reaction.

What type of error does this cause in the results? [1 mark]

Tick (\checkmark) ONE box.

Human error

Random error

Systematic error

Zero error

| 0 | 7.4 | The student used a glass beaker for the |
| :--- | :--- | :--- | :--- | reaction.

Name a container the student could use instead of the glass beaker to improve the accuracy of the results. [1 mark]
\qquad
\qquad
\qquad
[Turn over]

077 . 5 TABLE 3 shows the student's results.
TABLE 3

Volume of dilute sulfuric acid added in cm^{3}	Temperature in ${ }^{\circ} \mathrm{C}$
5	21.2
10	22.0
15	22.8
20	23.6
25	24.4
30	25.2

Plot the data from TABLE 3 on FIGURE 10.

You should:

- draw a line of best fit
- extend your line of best fit to the y-axis.
[4 marks]

FIGURE 10

Temperature in ${ }^{\circ} \mathrm{C}$

Volume of dilute sulfuric acid added in cm^{3}
[Turn over]

BLANK PAGE

| 0 | 7.6 The intercept on the y-axis of FIGURE 10, on |
| :--- | :--- | :--- | :--- | page 51, shows the starting temperature of the potassium hydroxide solution.

Give the starting temperature of the potassium hydroxide solution. [1 mark]

Starting temperature $=$

| 0 | 7 | 7 |
| :--- | :--- | :--- | Another student repeated the investigation and obtained an anomalous result.

This result was lower than expected.
What could have caused the anomalous result? [2 marks]

Tick (\checkmark) TWO boxes.

The mixture was not stirred.

The temperature in the room increased.

The thermometer was not accurate.

Too little sulfuric acid was added.

\square| Too much potassium hydroxide |
| :--- |
| solution was used. |

This question is about the periodic table.
This question is about the periodic table.
In the 19th century, some scientists tried to classify the elements by
arranging them in order of their atomic weights.
FIGURE 11, on the opposite page, shows the periodic table Mendeleev produced in 1869.
His periodic table was more widely accepted than previous versions.
The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127
Why did Mendeleev reverse the order of these two elements? [1 mark]
\square
$0 \mid 8$
∞
FIGURE 11

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	H						
Period 2	Li	Be	B	c	N	0	F
Period 3	Na	Mg	AI	Si	P	S	Cl
Period 4	K^{Cu}	Ca Zn	* *	Ti	As	Se	Mn Br
Period 5	$\mathrm{Rb}_{\mathrm{Ag}}$	Sr Cd	In	Sn	$\mathrm{Nb}_{\mathrm{Sb}}$	Mo Te	* 1

[Turn over]
Mendeleev left spaces marked with an asterisk
He left these spaces because he thought missing elements belonged
there.
Why did Mendeleev's periodic table become more widely accepted than
previous versions? [3 marks]
008.2
REPEAT OF FIGURE 11

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	H						
Period 2	Li	Be	B	C	N	0	F
Period 3	Na	Mg	Al	Si	P	S	Cl
Period 4		Ca Zn	* *	Ti	\mathbf{v}	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	In	Zr	Nb Sb	Mo Te	* I

Mendeleev arranged the elements in order of their atomic weight.
What is the modern name for atomic weight? [1 mark]
Tick (\checkmark) ONE box

Mass number
Relative atomic mass

m
018.
Complete the sentence.
In the modern periodic table, the elements
are arranged in order of
[1 mark]

+0
0

Chlorine, iodine and astatine are in Group 7 of the modern periodic
table.

- the formula of an astatine molecule - the state of astatine at room temperature. [2 marks]
Formula of astatine molecule
State at room temperature

| 0 | 8 |
| :--- | :--- | 6 Sodium is in Group 1 of the modern periodic table.

Describe what you would see when sodium reacts with chlorine.
[2 marks]

[Turn over]	$\boxed{10}$

[Turn over]
$\stackrel{\text { 表 }}{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{n}}}}}}}}}}}$

BLANK PAGE

\section*{| 0 | 9 | This question is about acids and alkalis. |
| :--- | :--- | :--- |}

| 0 | 9. | Which ion do all acids produce in aqueous |
| :--- | :--- | :--- | solution? [1 mark]

Tick (\checkmark) ONE box.

H^{+}

H^{-}

O^{2-}

OH^{-}

| 0 | 9.2 | Calcium hydroxide solution reacts with an acid |
| :--- | :--- | :--- | to form calcium chloride.

Complete the word equation for the reaction.
[2 marks]
calcium hydroxide + \qquad acid \rightarrow
calcium chloride + \qquad
[Turn over]

A student investigates the volume of sodium hydroxide solution that reacts with $25.0 \mathrm{~cm}^{3}$ of dilute sulfuric acid.

FIGURE 12 shows the apparatus the student uses.

FIGURE 12

Use FIGURE 12 to answer Questions 09.3 and 09.4

0	9	.3 Name apparatus A. [1 mark]

| 0 | 9.4 | What is the reading on apparatus A? [1 mark] |
| :--- | :--- | :--- | $\longrightarrow \mathrm{cm}^{3}$

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">9.5</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 9.5 |
| :--- | :--- |</table-markdown></div> The higher the concentration of a sample of dilute sulfuric acid, the greater the volume of sodium hydroxide needed to neutralise the acid.

The student tested two samples of dilute sulfuric acid, P and Q.

Describe how the student could use titrations to find which sample, P or Q, is more concentrated. [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

｜｜｜｜｜｜｜｜｜｜

BLANK PAGE

[Turn over]

| 1 | 0 |
| :--- | :--- | This question is about materials and their properties.

1	0.
1	FIGURE 13 shows a carbon nanotube.

FIGURE 13

The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.

Explain why carbon nanotubes conduct electricity. [2 marks]

[Turn over]

1	0.2
FIGURE 14	shows a badminton racket.

FIGURE 14

Frame

TABLE 4 shows some properties of materials.
The materials could be used to make badminton racket frames.

TABLE 4

Material	Density in $\mathbf{g} / \mathrm{cm}^{3}$	Relative strength	Relative stiffness
Aluminium	2.7	0.3	69
Carbon nanotube	1.5	60	1000
Wood	0.71	0.1	10

Evaluate the use of the materials to make badminton racket frames.

Use TABLE 4. [4 marks]
\qquad
[Turn over]

BLANK PAGE

[Turn over]

Zinc oxide can be produced as nanoparticles and as fine particles.

| 1 | 0. | 3 |
| :--- | :--- | :--- | A nanoparticle of zinc oxide is a cube of side 82 nm

FIGURE 15 represents a nanoparticle of zinc oxide.

FIGURE 15

Calculate the surface area of a nanoparticle of zinc oxide.

Give your answer in standard form. [3 marks]
\qquad
\qquad
\qquad

Surface area $=$ $n m^{2}$

| 1 | 0 |
| :--- | :--- | .4 Some suncreams contain zinc oxide as nanoparticles or as fine particles.

Suggest ONE reason why it costs less to use nanoparticles rather than fine particles in suncreams. [1 mark]
\qquad
\qquad
\qquad

END OF QUESTIONS

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Copyright information
For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/NC/Jun19/8462/1F/E3

