AQA
Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
GCSE
CHEMISTRY
Foundation Tier Paper 1 8462/1F

Thursday 16 May 2019 Morning
Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

2

For this paper you must have:

- a ruler
- a scientific calculator - the periodic table (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided. Do not write on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

01

This question is about atomic structure.
FIGURE 1 represents an atom of element Z.

FIGURE 1

Name the parts of the atom labelled A and B.

Choose answers from the list below. [2 marks]

- electron
- neutron
- nucleus
- proton

A

B

[Turn over]

6

0 1. 2

Which particle has the lowest mass?
Choose the answer from the list below. [1 mark]

- electron
- neutron
- nucleus
- proton

BLANK PAGE

[Turn over]

REPEAT OF FIGURE 1

0	1

Which group of the periodic table contains element Z ?

Use FIGURE 1. [1 mark]

Group

9

0	1

Give the atomic number and the mass number of element Z.

Use FIGURE 1.
Choose answers from the box. [2 marks]

Atomic number
Mass number
[Turn over]

Bromine has two different types of atom.
The atoms have a different number of neutrons but the same number of protons.

0	1

What is the name for this type of atom?
[1 mark]
Tick (\checkmark) ONE box.
Compound

Ion

Isotope

Molecule

0	1

The different types of bromine atom can be represented as ${ }_{35}^{79} \mathrm{Br}$ and ${ }_{35}^{81} \mathrm{Br}$

The relative atomic mass $\left(A_{r}\right)$ of bromine is 80

Which statement is true about the number of each type of atom in bromine?
[1 mark]
Tick (\checkmark) ONE box.
$\square \begin{aligned} & \text { There are fewer }{ }_{35}^{79} \mathrm{Br} \text { atoms than } \\ & { }_{35} \mathrm{Br} \text { atoms. }\end{aligned}$

\square There are more ${ }_{35}^{79} \mathrm{Br}$ atoms than ${ }_{35}^{81} \mathrm{Br}$ atoms.

\square There are the same number of ${ }_{35}^{79} \mathrm{Br}$ atoms and ${ }_{35}^{81} \mathrm{Br}$ atoms.

$0 \mid 2$

This question is about compounds of oxygen and hydrogen.

FIGURE 2 represents the structure of hydrogen peroxide.

FIGURE 2
$\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$

0	2	1

What is the correct formula of hydrogen peroxide? [1 mark]

Tick (\checkmark) ONE box.

H2O2

HO_{2}
$\mathrm{H}^{2} \mathrm{O}^{2}$

$\mathrm{H}_{2} \mathrm{O}_{2}$
IIIIIIIII

0 2. 2

Which type of bonding is shown in FIGURE 2? [1 mark]

Tick (\checkmark) ONE box.

Covalent

Ionic

Metallic

[Turn over]

\section*{| 0 | 2 |
| :--- | :--- | :--- |}

Hydrogen peroxide decomposes in the presence of a catalyst.

Which elements are often used as catalysts? [1 mark]

Tick (\checkmark) ONE box.
Alkali metals

Halogens

Transition metals

15

BLANK PAGE

[Turn over]

FIGURE 3 shows the reaction profile for the decomposition of hydrogen peroxide.

The word equation for this reaction is:
hydrogen peroxide \rightarrow water + oxygen

FIGURE 3

Energy \uparrow

Labels A, B, C and D each represent a different part of the reaction profile.

Use FIGURE 3 to answer Questions 02.4 and 02.5
0.2 .4

Which label shows the activation energy?
[1 mark]
Tick (\checkmark) ONE box.

A
D

C

D
[Turn over]

18

0.2 .5

Which label shows the energy of hydrogen peroxide? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D

The decomposition of hydrogen peroxide gives out energy to the surroundings.

What type of reaction is this? [1 mark]
Tick (\checkmark) ONE box.

Displacement
Endothermic
Exothermic
Neutralisation
[Turn over]

0	2

Hydrogen and oxygen form water.
A hydrogen atom contains one electron.
An oxygen atom contains six electrons in the outer shell.

Complete FIGURE 4 to show a dot and cross diagram for a water molecule.

Show the outer electrons only. [2 marks]
FIGURE 4

21

BLANK PAGE

[Turn over]

22

$0 \mid 3$

This question is about elements, compounds and mixtures.

FIGURE 5 shows five different substances, A, B, C, D and E.
\bigcirc and \bigcirc represent atoms of different elements.

FIGURE 5

23
Use FIGURE 5 to answer Questions 03.1 to 03.3

0	3

Which substance is only one compound? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

[Turn over]

24
REPEAT OF FIGURE 5

25

0	3

Which substance is a mixture of elements? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D

[Turn over]

26

BLANK PAGE

27

\section*{| 0 | 3 |
| :--- | :--- | :--- |}

Which substance is a mixture of an element and a compound? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D

[Turn over]

28

Substances are separated from a mixture using different methods.

| 0 | 3 |
| :--- | :--- | \mathbf{H}^{2}

Draw ONE line from each method of separation to the substance and mixture it would separate. [2 marks]

Method of separation
blue food colour from a mixture of food colours

chromatography

copper from an alloy of copper and zinc

copper sulfate from copper sulfate solution

crystallisation

Sand does not dissolve in water. A student separates a mixture of sand and water by filtration.

On the opposite page, draw a diagram of the apparatus the student could use. You should label:

- where the sand is collected
- where the water is collected.
[3 marks]

31

DIAGRAM

||I|||||||||

32

| 0.6 |
| :--- | :--- |

A student distils a sample of salt solution to produce pure water.

FIGURE 6 shows the apparatus.
FIGURE 6

What temperature would you expect the thermometer to show? [1 mark]

Tick (\checkmark) ONE box.

$0^{\circ} \mathrm{C}$

$10^{\circ} \mathrm{C}$

$50^{\circ} \mathrm{C}$
$\square 100^{\circ} \mathrm{C}$
[Turn over]

REPEAT OF FIGURE 6

35

0.3 .7

Describe how the process of distillation shown in FIGURE 6 produces pure water from salt solution. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\section*{| 0 | 4 |
| :--- | :--- | :--- |}

This question is about chemical cells and batteries.

A student investigated the voltage produced by different chemical cells.

FIGURE 7 shows the apparatus.
FIGURE 7

This is the method used.

1. Use cobalt metal as electrode X.
2. Record the cell voltage.
3. Repeat steps 1 and 2 using different metals as electrode X.

0	4

Suggest TWO variables the student should keep the same to make the investigation valid. [2 marks]

1 \qquad

2
[Turn over]

38
TABLE 1 shows the student's results.
TABLE 1

Electrode X	Voltage of the cell in volts
cobalt	0.62
magnesium	2.71
zinc	1.10

0	4

Write the three metals used for electrode X in order of reactivity.

Use TABLE 1. [1 mark]

Most reactive

Least reactive
\qquad
\qquad

| 0 | 4 |
| :--- | :--- | :--- |

Copper is used as electrode X in FIGURE 7, on page 36.

Predict the voltage of this cell.
Give ONE reason for your answer. [2 marks]
Voltage =
volts
Reason
[Turn over]
014.4

Describe how to make a 12 V battery using 1.5 V cells. [2 marks]
\qquad
\qquad
\qquad
\qquad

Which is the most suitable use for a non-rechargeable cell? [1 mark]

Tick (\checkmark) ONE box.

Electric toy

Laptop computer

Mobile phone

[Turn over]

42

0	4

Hydrogen fuel cells or rechargeable cells can be used to power electric vehicles.

Suggest ONE advantage and ONE disadvantage of using a hydrogen fuel cell compared with a rechargeable cell. [2 marks]

Advantage of hydrogen fuel cell

Disadvantage of hydrogen fuel cell

43

BLANK PAGE

[Turn over]

0	5

A student investigated the reaction between lumps of calcium carbonate and dilute hydrochloric acid.

This is the method used.

1. Pour $100 \mathrm{~cm}^{3}$ of dilute hydrochloric acid into a conical flask.
2. Place the conical flask on a balance.
3. Add 2 g of calcium carbonate lumps to the conical flask.
4. Wait until the calcium carbonate stops reacting.
5. Record the decrease in mass of the conical flask and contents.
6. Repeat steps 1 to 5 three more times.

45

The equation for the reaction is:
$\mathrm{CaCO}_{3}(\mathrm{X})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow$
$\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
0.5 .1

What is the state symbol X in the equation? [1 mark]

Tick (\checkmark) ONE box.

aq

g

S
[Turn over]

TABLE 2 shows the student's results. TABLE 2

	Result 1	Result 2	Result 3	Result 4
Decrease in mass of the conical flask and contents in g	0.84	0.79	0.86	0.47

47

0	5

Why does the mass of the conical flask and contents decrease during the reaction? [1 mark]

Tick (\checkmark) ONE box.
A gas escapes.
\square A new solution is made.

The dilute hydrochloric acid is used up.

[Turn over]

48
REPEAT OF TABLE 2

	Result 1	Result 2	Result 3	Result 4
Decrease in mass of the conical flask and contents in g	0.84	0.79	0.86	0.47

0.5 . 3

What is the range of the four results in TABLE 2? [1 mark]
From \qquad
\qquad

0	5	4

Calculate the mean decrease in mass of the conical flask and contents.

Do NOT include the anomalous result.
Use TABLE 2. [2 marks]

Mean decrease in mass =
[Turn over]

A teacher demonstrated the investigation.
The teacher used different masses of calcium carbonate.

FIGURE 8, on the opposite page, shows the teacher's results.

0	5

What type of variable is the mass of calcium carbonate? [1 mark]

Tick (\checkmark) ONE box.
Control

Dependent

Independent

51
FIGURE 8
Decrease
in mass
of the
conical
flask and
contents
in \mathbf{g}

|l|l||11 [Turn over]

52

BLANK PAGE

Use FIGURE 8, on page 51, to answer Questions 05.6 and 05.7

0	5

Complete the sentence. [1 mark]

As the mass of calcium carbonate used increases, the decrease in mass of the conical flask and contents

0	5

What is the decrease in mass of the conical flask and contents when a 3 g sample of calcium carbonate is used?
[1 mark]

Decrease in mass =
[Turn over]

54

06

This question is about the extraction of metals.

0	6

Tungsten is a metal.
The symbol of tungsten is W
Tungsten is produced from tungsten oxide by reaction with hydrogen.

The equation for the reaction is:
$\mathrm{WO}_{3}+3 \mathrm{H}_{2} \rightarrow \mathbf{W}+3 \mathrm{H}_{2} \mathrm{O}$

55

Calculate the percentage atom economy when tungsten is produced in this reaction.

Use the equation:

percentage atom economy =

$$
\frac{184}{\left(M_{r} \mathrm{WO}_{3}\right)+\left(3 \times M_{r} \mathrm{H}_{2}\right)} \times 100
$$

Relative formula masses (M_{r}):
$W_{3}=232 \quad H_{2}=2$
[2 marks]
\qquad
\qquad
\qquad

Percentage atom economy =

56
Aluminium is extracted from aluminium oxide.
06.2
38% of a rock sample is aluminium oxide.
Calculate the mass of aluminium oxide in 40 kg of the rock sample. [2 marks]

Mass of aluminium oxide =
kg

06.3
The formula of aluminium oxide is $\mathrm{Al}_{2} \mathrm{O}_{3}$
Calculate the relative formula mass $\left(M_{r}\right)$ of aluminium oxide.

Relative atomic masses $\left(A_{r}\right)$:
$O=16 \quad A I=27$
[2 marks]
\qquad
\qquad
\qquad

Relative formula mass $\left(M_{r}\right)=$
[Turn over]
||l|l||l||II

58

| 0.6 |
| :--- | :--- |

60.0 kg of aluminium oxide produces a maximum of 31.8 kg of aluminium.

In an extraction process only 28.4 kg of aluminium is produced from 60.0 kg of aluminium oxide.

Calculate the percentage yield.
Give your answer to 3 significant figures. Use the equation:
percentage yield =
mass of product actually made
maximum theoretical mass of product $\times 100$
[3 marks]
\qquad
\qquad

59

Percentage yield $=$

[Turn over]

60

0	6

Extracting metals by electrolysis is a very expensive process.

Explain why aluminium is extracted using electrolysis and not by reduction with carbon. [2 marks]

11

07

This question is about energy changes in reactions.
07.1

Ammonium nitrate dissolves in water.
The change is endothermic.
Which piece of equipment uses this change? [1 mark]

Tick (\checkmark) ONE box.
Hand warmer
Self-heating can
Sports injury pack
[Turn over]
A student investigated the temperature change in the
reaction between dilute sulfuric acid and potassium
σ

63

64

|||||||||||||||||

65

FIGURE 9

66

077.3

Energy is lost to the surroundings during the reaction.

What type of error does this cause in the results? [1 mark]

Tick (\checkmark) ONE box.

Human error

Random error

Systematic error

67

| 0.7 |
| :--- | :--- |

The student used a glass beaker for the reaction.

Name a container the student could use instead of the glass beaker to improve the accuracy of the results. [1 mark]
[Turn over]

68

077.5

TABLE 3 shows the student's results.
TABLE 3

Volume of dilute sulfuric acid added in cm^{3}	Temperature in ${ }^{\circ} \mathrm{C}$
5	21.2
10	22.0
15	22.8
20	23.6
25	24.4
30	25.2

Plot the data from TABLE 3 on
FIGURE 10.
You should:

- draw a line of best fit
- extend your line of best fit to the y-axis.
[4 marks]

69

FIGURE 10

Temperature in ${ }^{\circ} \mathrm{C}$

Volume of dilute sulfuric acid added in cm^{3}

BLANK PAGE

07.6

The intercept on the y-axis of FIGURE 10, on page 69, shows the starting temperature of the potassium hydroxide solution.

Give the starting temperature of the potassium hydroxide solution. [1 mark]

Starting temperature $=$

[Turn over]

077.7

Another student repeated the investigation and obtained an anomalous result.

This result was lower than expected.
What could have caused the anomalous result? [2 marks]
Tick (\checkmark) TWO boxes.
\square The mixture was not stirred.
\square The temperature in the room increased.

The thermometer was not accurate.

Too little sulfuric acid was added.

Too much potassium hydroxide solution was used.

BLANK PAGE

[Turn over]

0	8

This question is about the periodic table.
In the 19th century, some scientists tried to classify the
elements by arranging them in order of their atomic
weights.
FIGURE 11, on the opposite page, shows the periodic table
Mendeleev produced in 1869.
His periodic table was more widely accepted than previous
versions.

75
FIGURE 11

	Group 1	Group 2	Group 3	Group 4	Group 5	Group $\mathbf{6}$	Group 7	
Period 1	H							
Period 2	Li	Be	B	C	N	O	F	
Period 3	Na	Mg	Al	Si	P	S	Cl	
Period 4	K	Cu	Ca	Zn	$*$	$*$	Ti	$*$

[Turn over]

76

$0 \mid 8.1$
The atom
iodine (I)

The atomic weight of tellurium (Te) is 128 and that of
iodine (I) 127
Why did Mendeleev reverse the order of these two
elements? [1 mark]
[Turn over]
REPEAT OF FIGURE 11

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	H						
Period 2	Li	Be	B	C	N	0	F
Period 3	Na	Mg	Al	Si	P	S	Cl
Period 4	$\begin{array}{ll} \mathrm{K} & \\ & \mathrm{Cu} \end{array}$	$\mathrm{Ca}_{\mathrm{Zn}}$	* *	Ti	$\begin{array}{\|ll\|} \hline \mathbf{V} & \\ & \text { As } \end{array}$	$\mathrm{Cr}_{\mathrm{Se}}$	${ }^{\text {Mn }} \mathrm{Br}$
Period 5	$\mathrm{Rb}_{\mathrm{Ag}}$	$\mathrm{Sr}_{\mathrm{Cd}}$			$\mathrm{Nb}_{\mathrm{Sb}}$	$\mathrm{Mo}_{\mathrm{Te}}$	* I

Mendeleev left spaces marked with an asterisk *品

81

Complete the sentence. [1 mark]
In the modern periodic table, the elements are arranged in
order of
[Turn over]

82

Chlorine, iodine and astatine are in Group 7 of the modern periodic table.
0.8 . 5

Astatine (At) is below iodine in Group 7. Predict:

- the formula of an astatine molecule
- the state of astatine at room temperature.
[2 marks]

Formula of astatine molecule

State at room temperature

83

0.8 . 6

Sodium is in Group 1 of the modern periodic table.

Describe what you would see when sodium reacts with chlorine. [2 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

0.9

This question is about acids and alkalis.

0	9	. 1

Which ion do all acids produce in aqueous solution? [1 mark]
Tick (\checkmark) ONE box.

H^{+}

H^{-}

O^{2-}

OH^{-}

85

0 . 9 . 2

Calcium hydroxide solution reacts with an acid to form calcium chloride.

Complete the word equation for the reaction. [2 marks]
calcium hydroxide + ___ acid \rightarrow calcium chloride +
[Turn over]

86

A student investigates the volume of sodium hydroxide solution that reacts with $25.0 \mathrm{~cm}^{3}$ of dilute sulfuric acid.

FIGURE 12 shows the apparatus the student uses.

FIGURE 12

Use FIGURE 12 to answer Questions 09.3 and 09.4

0	9

Name apparatus A. [1 mark]

| 0.4 |
| :--- | :--- |

What is the reading on apparatus A ?
[1 mark]
cm ${ }^{3}$
[Turn over]
|||||||||||

88

\section*{| 0 | 9. |
| :--- | :--- |}

The higher the concentration of a sample of dilute sulfuric acid, the greater the volume of sodium hydroxide needed to neutralise the acid.

The student tested two samples of dilute sulfuric acid, P and Q.

Describe how the student could use titrations to find which sample, P or Q, is more concentrated. [6 marks]
\qquad
\qquad
\qquad
\qquad

89
\qquad
\qquad
\qquad
\qquad
\qquad

90

BLANK PAGE

91

92

10

This question is about materials and their properties.

1	0

FIGURE 13 shows a carbon nanotube.
FIGURE 13

The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.

93

Explain why carbon nanotubes conduct electricity. [2 marks]

[Turn over]

94

10.2

FIGURE 14 shows a badminton racket.
FIGURE 14

TABLE 4, on the opposite page, shows some properties of materials.

The materials could be used to make badminton racket frames.

95

TABLE 4

$\left.$| Material | Density in
 g/cm |
| :--- | :--- | :--- | :---: | | Relative |
| :--- |
strength		Relative			
stiffness	\right\rvert\,	Aluminium	2.7	0.3	69
:---	:---	:---	:---:		
Carbon nanotube	1.5	60	1000		
Wood	0.71	0.1	10		

Evaluate the use of the materials to make badminton racket frames.

Use TABLE 4. [4 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

96

BLANK PAGE

97

\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

98

Zinc oxide can be produced as nanoparticles and as fine particles.

1	0	3

A nanoparticle of zinc oxide is a cube of side 82 nm

FIGURE 15 represents a nanoparticle of zinc oxide.

FIGURE 15

99

Calculate the surface area of a nanoparticle of zinc oxide.

Give your answer in standard form. [3 marks]
\qquad
\qquad
\qquad
\qquad

Surface area =
$n m^{2}$
[Turn over]

100

10.4

Some suncreams contain zinc oxide as nanoparticles or as fine particles.

Suggest ONE reason why it costs less to use nanoparticles rather than fine particles in suncreams. [1 mark]

END OF QUESTIONS

101

BLANK PAGE

102

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/Jun19/AMAS/8462/1F/E2

