AQAE

Surname
Other Names

Centre Number

Candidate Number
Candidate Signature
I declare this is my own work.

GCSE
 CHEMISTRY

Higher Tier Paper 1

8462/1H

Thursday 14 May 2020
Morning
Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

BLANK PAGE

| 0 | 1 |
| :--- | :--- |\quad This question is about structure and bonding.

| 0 | 1.1 | 1 |
| :--- | :--- | :--- | forces between particles? [2 marks] Tick (\checkmark) TWO boxes.

Diamond

Magnesium

Poly(ethene)

Sodium chloride

Water

[Turn over]

\section*{| 0 | 1. | 2 |
| :--- | :--- | :--- |
| TABLE | | |
| 1 | | | shows the structures of three compounds.}

The diagrams are not drawn to scale.

TABLE 1

COMPOUND	STRUCTURE
Carbon dioxide	
Magnesium oxide	
Silicon dioxide	

Compare the structure and bonding of the three compounds:

- carbon dioxide
- magnesium oxide
- silicon dioxide.
[6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

\qquad
\qquad

BLANK PAGE

[Turn over]

| 0 | 2 |
| :--- | :--- | This question is about metals and the reactivity series.

0	2	1
1		

Tick (\checkmark) TWO boxes.

They are soft metals.

They form colourless compounds.

They form ions with different charges.

They have high melting points.

They have low densities.

| 0 | 2 | 2 |
| :--- | :--- | :--- | A student added copper metal to colourless silver nitrate solution.

The student observed:

- pale grey crystals forming
- the solution turning blue.

Explain how these observations show that silver is less reactive than copper. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 2. | 3 |
| :--- | :--- | :--- | A student is given three metals, X, Y and Z to identify.

The metals are magnesium, iron and copper.
Plan an investigation to identify the three metals by comparing their reactions with dilute hydrochloric acid.

Your plan should give valid results. [4 marks]
\qquad
[Turn over]

0	2	4
4		

TABLE 2 shows the mass numbers and percentage abundances of the isotopes.

TABLE 2

Mass number	Percentage abundance (\%)
203	30
205	70

Calculate the relative atomic mass $\left(A_{r}\right)$ of metal M.

Give your answer to 1 decimal place.
[2 marks]
\qquad
\qquad
\qquad
\qquad

Relative atomic mass (1 decimal place) $=$

[Turn over]

| 0 | 3 |
| :--- | :--- | :--- | This question is about silver iodide.

Silver iodide is produced in the reaction between silver nitrate solution and sodium iodide solution.

The equation for the reaction is:
$\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaI}(\mathrm{aq}) \longrightarrow$
$\mathrm{AgI}^{(\mathrm{s})}+\mathrm{NaNO}_{3}(\mathrm{aq})$

| 0 | 3 | 1 |
| :--- | :--- | :--- | A student investigated the law of conservation of mass.

This is the method used.

1. Pour silver nitrate solution into a beaker labelled A.
2. Pour sodium iodide solution into a beaker labelled B.
3. Measure the masses of both beakers and their contents.
4. Pour the solution from beaker B into beaker A.
5. Measure the masses of both beakers and their contents again.

TABLE 3 shows the student's results.
TABLE 3

	Mass before mixing in g	Mass after mixing in g
Beaker A and contents	78.26	108.22
Beaker B and contents	78.50	48.54

Explain how the results demonstrate the law of conservation of mass.

You should use data from TABLE 3 in your answer. [2 marks]
[Turn over]

| 0 | 3 | 2 |
| :--- | :--- | :--- | insoluble silver iodide from the mixture at the end of the reaction. [1 mark]

The student purified the separated silver iodide.

This is the method used.

1. Rinse the silver iodide with distilled water.
2. Warm the silver iodide.

| 0 | 3 | 3 |
| :--- | :--- | :--- | rinsing with water. [1 mark]

\qquad

\section*{| 0 | 3. | 4 |
| :--- | :--- | :--- |
| Suggest why the student warmed the silver | | | iodide. [1 mark]}

[Turn over]

| 0 | 3.5 |
| :--- | :--- | Calculate the percentage atom economy for the production of silver iodide in this reaction.

The equation for the reaction is:
$\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaI}(\mathrm{aq}) \longrightarrow$
$\mathrm{Agl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$
Give your answer to 3 significant figures.
Relative formula masses (M_{r}):
$\mathrm{AgNO}_{3}=170 \quad \mathrm{NaI}=150$
$\mathrm{AgI}=235 \quad \mathrm{NaNO}_{3}=85$
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Percentage atom economy (3 significant figures) $=$

\%

| 0 | 3. |
| :--- | :--- | Give ONE reason why reactions with a high atom economy are used in industry. [1 mark]

\qquad
\qquad
[Turn over]

0	4

A student investigated the electrolysis of copper chromate solution.

Copper chromate solution is green.
Copper chromate contains:

- blue coloured Cu^{2+} ions
- yellow coloured $\mathrm{CrO}_{4}{ }^{2-}$ ions.

FIGURE 1 shows the apparatus used.

FIGURE 1

The student switched the power supply on.
The student observed the changes at each electrode.
TABLE 4 shows the student's observations.
TABLE 4

Changes at positive electrode	Changes at negative electrode		
Solution turned yellow	Solution turned blue		
Bubbles formed at the			
electrode		\quad	Solid formed on the
:---			
electrode	,		

0	4	1
Explain why the colour changed at the		

[Turn over]

24

| 0 | 4 | 2 |
| :--- | :--- | :--- | was oxygen.

The oxygen was produced from hydroxide ions.

Name the substance in the solution that provides the hydroxide ions. [1 mark]
\qquad
\qquad

| 0 | 4 | .3 |
| :--- | :--- | :--- | electrode. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 4 | .4 |
| :--- | :--- | :--- | The student repeated the investigation using potassium iodide solution instead of copper chromate solution.

Name the product at each electrode when potassium iodide solution is electrolysed. [2 marks]

Negative electrode

Positive electrode
[Turn over]

| 0 | 5 |
| :--- | :--- | :--- | scientific theories.

FIGURE 2 shows a timeline of some important steps in the development of the model of the atom.

FIGURE 2

| 0 | 5. | 1 |
| :--- | :--- | :--- | The plum pudding model did not have a nucleus.

Describe THREE other differences between the nuclear model of the atom and the plum pudding model. [3 marks]

1
\qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad
\qquad
3 \qquad
\qquad
\qquad
[Turn over]

28

REPEAT OF FIGURE 2

0	5.	2
Niels Bohr adapted the nuclear model.		

Describe the change that Bohr made to the nuclear model. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | 3 | Mendeleev published his periodic table in |
| :--- | :--- | :--- | :--- | 1869.

Mendeleev arranged the elements in order of atomic weight.

Mendeleev then reversed the order of some pairs of elements.

A student suggested Mendeleev's reason for reversing the order was to arrange the elements in order of atomic number.

Explain why the student's suggestion CANNOT be correct.

Use FIGURE 2. [2 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

0	5.4	$\begin{array}{l}\text { Give the correct reason why Mendeleev } \\ \text { reversed the order of some pairs of elements. } \\ \text { [1 mark] }\end{array}$

\qquad
\qquad
\qquad
$\frac{}{8}$

BLANK PAGE

[Turn over]

| 0 | 6 |
| :--- | :--- | :--- |\quad This question is about displacement reactions.

| 0 | 6.1 | The displacement reaction between |
| :--- | :--- | :--- | aluminium and iron oxide has a high activation energy.

What is meant by 'activation energy'? [1 mark]

| 0 | 6.2 | A mixture contains 1.00 kg of aluminium and |
| :--- | :--- | :--- | 3.00 kg of iron oxide.

The equation for the reaction is:
$2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
Show that aluminium is the limiting reactant.
Relative atomic masses $\left(A_{r}\right)$:
$0=16 \quad \mathrm{Al}=27 \quad \mathrm{Fe}=56$
[4 marks]

[Turn over]

Magnesium displaces zinc from zinc sulfate solution.

0	6.3	3
Complete the ionic equation for the reaction.		

You should include state symbols. [2 marks]
$\mathrm{Mg}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq}) \longrightarrow \longrightarrow+$ \qquad

| 0 | 6.4 | Explain why the reaction between magnesium |
| :--- | :--- | :--- | atoms and zinc ions is both oxidation and reduction. [2 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

| 0 | 7 | The reaction between hydrogen and oxygen |
| :--- | :--- | :--- | releases energy.

| 0 | 7. | 1 |
| :--- | :--- | :--- | A student drew a reaction profile for the reaction between hydrogen and oxygen.

FIGURE 3 shows the student's reaction profile.

FIGURE 3
Energy

Progress of reaction
\rightarrow

The student made TWO errors when drawing the reaction profile.

Describe the TWO errors. [2 marks]
1
\qquad
\qquad
2
[Turn over]

| 0 | 7. | 2 |
| :--- | :--- | :--- | The reaction between hydrogen and oxygen in a hydrogen fuel cell is used to produce electricity.

Hydrogen fuel cells and rechargeable cells are used to power some cars.

Give TWO advantages of using hydrogen fuel cells instead of using rechargeable cells to power cars. [2 marks]

1 \qquad
\qquad
\qquad
2
\qquad

0	7.	3
Reactions occur at the positive electrode and		

Write a half equation for ONE of these reactions. [1 mark]
[Turn over]

| 0 | 7.4 | The three states of matter can be represented |
| :--- | :--- | :--- | by a simple particle model.

FIGURE 4 shows a simple particle model for hydrogen gas.

FIGURE 4

Give TWO limitations of this simple particle model for hydrogen gas. [2 marks]

1 \qquad
\qquad

2 \qquad
\qquad
\qquad

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">7.5</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 7.5 |
| :--- | :--- |</table-markdown></div> The hydrogen gas needed to power a car for 400 km would occupy a large volume.

Suggest ONE way that this volume can be reduced. [1 mark]
[Turn over]

| 0 | 7 | 6 | The energy needed for a car powered by a |
| :--- | :--- | :--- | :--- | hydrogen fuel cell to travel 100 km is 58 megajoules (MJ).

The energy released when 1 mole of hydrogen gas reacts with oxygen is 290 kJ

The volume of 1 mole of a gas at room temperature and pressure is $24 \mathrm{dm}^{3}$

Calculate the volume of hydrogen gas at room temperature and pressure needed for the car to travel 100 km [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Volume of hydrogen gas =
dm^{3}
[Turn over]

0	8	This question is about the halogens.

TABLE 5 shows the melting points and boiling points of some halogens.

TABLE 5

Element	Melting point in ${ }^{\circ} \mathrm{C}$	Boiling point in ${ }^{\circ} \mathrm{C}$
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7	59

| 0 | 8.1 |
| :--- | :--- | :--- | What is the state of bromine at $0^{\circ} \mathrm{C}$ AND at $100^{\circ} \mathrm{C}$? [1 mark]

Tick (\checkmark) ONE box.
State at $0^{\circ} \mathrm{C} \quad$ State at $100^{\circ} \mathrm{C}$

Gas
Gas

Liquid

Liquid

Solid

Solid
Gas

Liquid
[Turn over]

REPEAT OF TABLE 5

Element	Melting point in ${ }^{\circ} \mathrm{C}$	Boiling point in ${ }^{\circ} \mathrm{C}$
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7	59

| 0 | 8. | 2 |
| :--- | :--- | :--- | halogens shown in TABLE 5. [4 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">8</td>
<td style="text-align: left; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">.3</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 8 | .3 |
| :--- | :--- | :--- |</table-markdown></div>W^{2} Why is it NOT correct to say that the boiling point of a single bromine molecule is $59^{\circ} \mathrm{C}$? [1 mark]

[Turn over]

Iron reacts with each of the halogens in their gaseous form.

FIGURE 5 shows the apparatus used.
FIGURE 5

| 0 | 8 | 4 Give ONE reason why this experiment should |
| :--- | :--- | :--- | be done in a fume cupboard. [1 mark]

\qquad
\qquad
\qquad

| 0 | 8 |
| :--- | :--- | .5 Explain why the reactivity of the halogens decreases going down the group. [3 marks]

[Turn over]

0	8.6
A teacher investigated the reaction of iron with	

The word equation for the reaction is:
iron + chlorine \longrightarrow iron chloride
The teacher weighed:

- the glass tube
- the glass tube and iron before the reaction
- the glass tube and iron chloride after the reaction.

TABLE 6 shows the teacher's results.
TABLE 6

	Mass in g
Glass tube	51.56
Glass tube and iron	56.04
Glass tube and iron chloride	64.56

Calculate the simplest whole number ratio of:
moles of iron atoms: moles of chlorine atoms
Determine the balanced equation for the reaction. Relative atomic masses $\left(A_{r}\right): \quad \mathrm{Cl}=35.5 \quad \mathrm{Fe}=56$ [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Moles of iron atoms : moles of chlorine atoms =
\qquad :

Equation for the reaction
[Turn over]

| 0 | 9 |
| :--- | :--- | This question is about citric acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}\right)$.

Citric acid is a solid.
A student investigated the temperature change during the reaction between citric acid and sodium hydrogencarbonate solution.

This is the method used.

1. Pour $25 \mathrm{~cm}^{3}$ of sodium hydrogencarbonate solution into a polystyrene cup.
2. Measure the temperature of the sodium hydrogencarbonate solution.
3. Add 0.20 g of citric acid to the polystyrene cup.
4. Stir the solution.
5. Measure the temperature of the solution.
6. Repeat steps 3 to 5 until a total of 2.00 g of citric acid has been added.

The student plotted the results on a graph.
FIGURE 6, on the opposite page, shows the student's graph.

FIGURE 6

Temperature of solution in ${ }^{\circ} \mathrm{C}$

Mass of citric acid in g
[Turn over]

BLANK PAGE

| 0 | 9 | 1 FIGURE 6, on page 53, shows an anomalous |
| :--- | :--- | :--- | point when 0.60 g of citric acid was added. This was caused by the student making an error.

The student correctly:

- measured the mass of the citric acid
- read the thermometer
- plotted the point.

Suggest ONE reason for the anomalous point. [1 mark]
[Turn over]

REPEAT OF FIGURE 6

Temperature of solution in ${ }^{\circ} \mathrm{C}$

Mass of citric acid in g

0	9.	2
Explain the shape of the graph in terms of the		

You should use data from FIGURE 6, on page 56, in your answer. [3 marks]
[Turn over]

REPEAT OF FIGURE 6

Temperature of solution in ${ }^{\circ} \mathrm{C}$

| 0 | 9 | 3 | A second student repeated the investigation |
| :--- | :--- | :--- | :--- | using a metal container instead of the polystyrene cup. The container and the cup were the same size and shape.

Sketch a line on FIGURE 6, on page 58, to show the second student's results until 1.00 g of citric acid had been added. The starting temperature of the solution was the same.

Explain your answer. [3 marks]

[Turn over]

The student used a solution of citric acid to determine the concentration of a solution of sodium hydroxide by titration.

| 0 | 9.4 |
| :--- | :--- | citric acid of concentration $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}$ Calculate the mass of citric acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}\right)$ required.

Relative atomic masses $\left(A_{\mathrm{r}}\right)$: $\mathrm{H}=1 \quad \mathrm{C}=12 \quad \mathrm{O}=16$
[3 marks]
\qquad
\qquad
\qquad
\qquad

Mass = g

This is part of the method the student used for the titration.

1. Measure $25.0 \mathrm{~cm}^{3}$ of the sodium hydroxide solution into a conical flask using a pipette.
2. Add a few drops of indicator to the flask.
3. Fill a burette with citric acid solution.

| 0 | 9.5 | Describe how the student would complete the |
| :---: | :---: | :---: | titration. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

0	9.6	Give TWO reasons why a burette is used for
the citric acid solution. [2 marks]		

2

| 0 | 9 | 7 | $13.3 \mathrm{~cm}^{3}$ of $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}$ citric acid solution |
| :--- | :--- | :--- | :--- | was needed to neutralise $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution.

The equation for the reaction is:
$3 \mathrm{NaOH}+\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
Calculate the concentration of the sodium hydroxide solution in mol/dm ${ }^{3}$ [3 marks]

Concentration $=$ \qquad $\mathrm{mol} / \mathrm{dm}^{3}$

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.
IB/M/MW/Jun20/8462/1H/E4

