AQA

Surname

Other Names
Centre Number
Candidate Number
Candidate Signature
GCSE
CHEMISTRY
Higher Tier Paper 1
8462/1H
Thursday 17 May 2018 Morning
Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

2

For this paper you must have:

- a ruler
- a scientific calculator - the periodic table (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

| 0 | 1 | Soluble salts are formed by |
| :--- | :--- | :--- | reacting metal oxides with acids.

| 0 | 1 |
| :--- | :--- | . 1 Give ONE other type of substance that can react with an acid to form a soluble salt. [1 mark]

0 1. 2 Calcium nitrate contains the ions Ca^{2+} and $\mathrm{NO}_{3}{ }^{-}$

Give the formula of calcium nitrate. [1 mark]

5

| 0 | 1 |
| :--- | :--- |, 3 Describe a method to make pure, dry crystals of magnesium sulfate from a metal oxide and a dilute acid. [6 marks]

\qquad
[Turn over]

6
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad | |
| :---: |
| -3 |

BLANK PAGE

[Turn over]
0.2 This question is about metals and metal compounds.

\section*{| 0 | 2 | 1 |
| :--- | :--- | :--- |
| Iron pyrites is an ionic | | | compound.}

FIGURE 1 shows a structure for iron pyrites.

FIGURE 1

KEY
$\bullet \mathrm{Fe}$
$\circ \mathrm{S}$

9

Determine the formula of iron pyrites.

Use FIGURE 1. [1 mark]

0	2	2
An atom of iron is represented		

Give the number of protons, neutrons and electrons in this atom of iron. [3 marks]
Number of protons
Number of neutrons
Number of electrons
[Turn over]

10

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Iron is a transition metal.</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 2 | Iron is a transition metal. |
| :--- | :--- | :--- |</table-markdown></div>

Sodium is a Group 1 metal.

Give TWO differences between the properties of iron and sodium. [2 marks]
1

2

\qquad

11

Nickel is extracted from nickel oxide by reduction with carbon.

0.2 . 4 Explain why carbon can be used to extract nickel from nickel oxide. [2 marks]

[Turn over]

0.5	An equation for the reaction is:

$\mathrm{NiO}+\mathrm{C} \rightarrow \mathrm{Ni}+\mathrm{CO}$
Calculate the percentage atom economy for the reaction to produce nickel.

Relative atomic masses (A_{r}): $\mathrm{C}=12 \quad \mathrm{Ni}=59$

Relative formula mass $\left(M_{r}\right)$: $\mathrm{NiO}=75$

Give your answer to 3 significant figures. [3 marks]

13

Percentage atom economy =

\%

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">3</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Chemical reactions can produce</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 3 | Chemical reactions can produce |
| :--- | :--- | :--- |</table-markdown></div> electricity.

\section*{| 0 | 3 | 1 |
| :--- | :--- | :--- |
| 1 | FIGURE 2 | shows a simple cell. |}

FIGURE 2

Electrode A

15

Which of these combinations would NOT give a zero reading on the voltmeter in FIGURE 2? [1 mark]

Tick ONE box.

	Electrode A	Electrode B	Electrolyte
	Copper	Copper	Sodium chloride solution
\square	Zinc	Zinc	Water
	Copper	Zinc	Sodium chloride solution
	Copper	Zinc	Water

[Turn over]

16

Alkaline batteries are nonrechargeable.

\section*{| 0 | 3 |
| :--- | :--- | . Why do alkaline batteries eventually stop working? [1 mark]}

\section*{| 0 | 3 | .3 Why can alkaline batteries NOT |
| :--- | :--- | :--- | be recharged? [1 mark]}

\qquad

17

Hydrogen fuel cells and rechargeable lithium-ion batteries can be used to power electric cars.

0	3	4
Complete the balanced equation		

$\mathrm{H}_{2}+\quad \rightarrow+\quad \mathrm{H}_{2} \mathrm{O}$

[Turn over]

18
TABLE 1

	Hydrogen fuel cell	Rechargeable lithium-ion battery
Time taken to refuel or recharge in minutes	5	30
Distance travelled before refuelling or recharging in miles	Up to 415	Up to 240
Distance travelled per unit of energy in km	22	66
Cost of refuelling or recharging in $£$	50	3
Minimum cost of car in $£$	60000	18000

19
03 . 5 TABLE 1 , on page 18 , shows data about different ways to power electric cars.

Evaluate the use of hydrogen fuel cells compared with rechargeable lithium-ion batteries to power electric cars.

Use TABLE 1 and your own knowledge. [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

20

BLANK PAGE

21
[Turn over]

22

0.4 FIGURE 3 represents different models of the atom.

FIGURE 3

| 0 | 4. | 1 |
| :--- | :--- | :--- | Which diagram shows the plum pudding model of the atom?

[1 mark]
Tick ONE box.

| 0 | 4 | 2 |
| :--- | :--- | :--- | of the atom developed from the alpha particle scattering experiment? [1 mark]

Tick ONE box.

[Turn over]

24

BLANK PAGE

25

| 0 | 4 | 3 |
| :--- | :--- | :--- | of the atom resulting from Bohr's work? [1 mark]

Tick ONE box.

0	4	4
Define the mass number of an		

[Turn over]

26
04 . 5 Element X has two isotopes. Their mass numbers are 69 and 71

The percentage abundance of each isotope is:

- 60% of ${ }^{69} \mathrm{X}$
- 40% of ${ }^{71} \mathrm{X}$

Estimate the relative atomic mass of element X. [1 mark]

Tick ONE box.

< 69.5

Between 69.5 and 70.0

Between 70.0 and 70.5

$$
>70.5
$$

27

| 0 | 4 | 6 Chadwick's experimental work |
| :--- | :--- | :--- | on the atom led to a better understanding of isotopes.

Explain how his work led to this
understanding. [3 marks]
\qquad
[Turn over]
8

28

| 0 | 5 |
| :--- | :--- | A student investigated the temperature change in displacement reactions between metals and copper sulfate solution.

TABLE 2 shows the student's results.

TABLE 2

Metal	Temperature increase in ${ }^{\circ} \mathrm{C}$
Copper	0
Iron	13
Magnesium	43
Zinc	17

29

\author{

0	5	1
1		

}

FIGURE 4

Temperature
increase
in ${ }^{\circ} \mathrm{C}$

Metal

0 5. 2 The student concluded that the

 reactions between the metals and copper sulfate solution are endothermic.Give ONE reason why this conclusion is NOT correct. [1 mark]

0.5 . 3 The temperature change depends on the reactivity of the metal.

The student's results are used to place copper, iron, magnesium and zinc in order of their reactivity.

31

Describe a method to find the position of an unknown metal in this reactivity series.

Your method should give valid results. [4 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">5.4</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Draw a fully labelled reaction</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 5.4 | Draw a fully labelled reaction |
| :--- | :--- | :--- |</table-markdown></div> profile for the reaction between zinc and copper sulfate solution on FIGURE 5. [3 marks]

FIGURE 5

Energy

Progress of reaction
10

BLANK PAGE

[Turn over]

| 0 | 6 | A student investigated the |
| :--- | :--- | :--- | electrolysis of different substances.

FIGURE 6 shows the apparatus.

FIGURE 6

 Soraphite electrodes
<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">6.1</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Explain why electrolysis would</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 6.1 | Explain why electrolysis would |
| :--- | :--- | :--- |</table-markdown></div>

 NOT take place in the apparatus shown in FIGURE 6. [2 marks][Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">6.2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 6.2 |
| :--- | :--- |</table-markdown></div>

 electricity.Answer in terms of the structure and bonding in graphite. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

38

The student investigated how the volume of gases produced changes with time in the electrolysis of sodium chloride solution.

FIGURE 7 shows the apparatus.

FIGURE 7

Chlorine
Test tubes
Hydrogen
Sodium
chloride
solution
Graphite electrodes
dc power supply

| 0 | 6. | 3 |
| :--- | :--- | :--- | selecting the apparatus for this investigation.

How should the apparatus be changed?

Give ONE reason for your answer. [2 marks]

\qquad
\qquad
[Turn over]

40

Another student used the correct apparatus.

This student measured the volumes of gases collected every minute for 20 minutes.

FIGURE 8, on page 41, shows the student's results.

FIGURE 8

Volume of gas collected in cm^{3} 10

[Turn over]

42
BLANK PAGE

| 0 | 6.4 | Describe the trends shown in |
| :--- | :--- | :--- | the results.

Use values from FIGURE 8 on page 41. [3 marks]

[Turn over]

| 0 | 6.5 | The number of moles of each |
| :--- | :--- | :--- | gas produced at the electrodes is the same.

No gas escapes from the apparatus.

Suggest ONE reason for the difference in volume of each gas collected. [1 mark]
\qquad
\qquad

45

0	6	6
Calculate the amount in moles of		

Use FIGURE 8 on page 41.
The volume of one mole of any gas at room temperature and pressure is $\mathbf{2 4 . 0} \mathbf{~ d m}^{\mathbf{3}}$

Give your answer in standard form. [3 marks]

Moles of chlorine $=$
mol
[Turn over]

07 This question is about Group 7 elements.

Chlorine is more reactive than iodine.

0 7. 1 Name the products formed when chlorine solution reacts with potassium iodide solution. [1 mark]

0 7. 7.2 Explain why chlorine is more reactive than iodine. [3 marks]

[Turn over]

48

\section*{| 0 | 7. | 3 |
| :--- | :--- | :--- |
| Chlorine reacts with hydrogen | | | to form hydrogen chloride.}

Explain why hydrogen chloride is a gas at room temperature.

Answer in terms of structure and bonding. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]
07.4 Bromine reacts with methane in sunlight.

FIGURE 9 shows the displayed formulae for the reaction of bromine with methane.

FIGURE 9

TABLE 3 shows the bond energies and the overall energy change in the reaction.

TABLE 3

[Turn over]

BLANK PAGE

Calculate the bond energy X for the $\mathrm{C} — \mathrm{Br}$ bond. Use FIGURE 9 on page 50 and TABLE 3 on page 51. [4 marks]
\qquad
\qquad
\qquad
\qquad

Bond energy $X=$
kJ/mol
11 [Turn over]

0	8
Titanium is a transition metal.	

Titanium is extracted from titanium dioxide in a two stage industrial process.

STAGE 1
$\mathrm{TiO}_{2}+2 \mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{TiCl}_{4}+2 \mathrm{CO}$
STAGE 2
$\mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow \mathrm{Ti}+4 \mathrm{NaCl}$

0	8	1
Suggest ONE hazard associated		

55

| 0 | 8 | 2 |
| :--- | :--- | :--- | the reaction in STAGE 2.

Give ONE reason why it would be hazardous if water came into contact with sodium. [1 mark]

0	8	.3
3		

56

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">4</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Titanium chloride is a liquid at</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 8 |
| :--- | :--- |
| 4 | Titanium chloride is a liquid at |</table-markdown></div> room temperature.

Explain why you would NOT expect titanium chloride to be a liquid at room temperature. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In STAGE 2, sodium displaces titanium from titanium chloride.

0.8 . 5 Sodium atoms are oxidised to sodium ions in this reaction.

Why is this an oxidation reaction? [1 mark]

0	8	6
Complete the half equation for		

$\mathrm{Na} \rightarrow+$ \qquad
[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">In STAGE $2,40 \mathrm{~kg}$ of titanium</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 8 |
| :---: | :---: |
| 7 | In STAGE $2,40 \mathrm{~kg}$ of titanium |</table-markdown></div> chloride was added to 20 kg of sodium.

The equation for the reaction is:
$\mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow \mathrm{Ti}+4 \mathrm{NaCl}$
Relative atomic masses $\left(A_{r}\right)$:
$\mathrm{Na}=23 \quad \mathrm{Cl}=35.5 \mathrm{Ti}=48$
Explain why titanium chloride is the limiting reactant.

You MUST show your working.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

59
[Turn over]

60
BLANK PAGE

| 0 | 8 |
| :--- | :--- | 8 For a STAGE 2 reaction the percentage yield was 92.3%

The theoretical maximum mass of titanium produced in this batch was 13.5 kg .

Calculate the actual mass of titanium produced. [2 marks]
\qquad
\qquad
\qquad

Mass of titanium $=$

\qquad
[Turn over]

62

| 0 | 9 | This question is about acids and |
| :--- | :--- | :--- | alkalis.

0	9.	1
Dilute hydrochloric acid is a		
strong acid.		

Explain why an acid can be described as both strong and dilute. [2 marks]
\qquad
\qquad
\qquad
\qquad

0 9. 2 A $1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{dm}^{3}$ solution of

 hydrochloric acid has a pH of 3.0What is the pH of a $1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$ solution of hydrochloric acid? [1 mark]
$\mathrm{pH}=$
[Turn over]

A student titrated 25.0 cm 3

 portions of dilute sulfuric acid with a $0.105 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide solution.\section*{| 0 | 9 | 3 |
| :--- | :--- | :--- | results.}

TABLE 4

	Volume of sodium hydroxide solution in cm
Titration 1	23.50
Titration 2	21.10
Titration 3	22.10
Titration 4	22.15
Titration 5	22.15

65

The equation for the reaction is:
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
$\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Calculate the concentration of the sulfuric acid in mol/dm ${ }^{3}$

Use only the student's concordant results.

Concordant results are those
within $0.10 \mathrm{~cm}^{3}$ of each other.
[5 marks]

66
BLANK PAGE

67

Concentration of sulfuric acid $=$ mol/dm ${ }^{3}$

[Turn over]

68

| 0 | 9.4 | Explain why the student should |
| :--- | :--- | :--- | use a pipette to measure the dilute sulfuric acid and a burette to measure the sodium hydroxide solution. [2 marks]

\qquad
\qquad
\qquad
\qquad
0.9 . 5 Calculate the mass of sodium hydroxide in $30.0 \mathrm{~cm}^{3}$ of a $0.105 \mathrm{~mol} / \mathrm{dm}^{3}$ solution.

Relative formula mass (M_{r}):
$\mathrm{NaOH}=40$ [2 marks]
\qquad
\qquad
\qquad
\qquad

Mass of sodium hydroxide $=$
g

END OF QUESTIONS

There are no questions printed on this page

For Examiner's Use	
Ouestion	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

