Surname	
Other Names	
Centre Number	
Candidate Number	
Candidate Signature _	

I declare this is my own work.

GCSE CHEMISTRY

Higher Tier Paper 2

8462/2H

Wednesday 10 June 2020

Morning

Time allowed: 1 hour 45 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

0 1	This question is about chemical analysis.
	A student tested copper sulfate solution and calcium iodide solution using flame tests.
	This is the method used.
	1. Dip a metal wire in copper sulfate solution.
	2. Put the metal wire in a blue Bunsen burner flame.
	3. Record the flame colour produced.
	4. Repeat steps 1 to 3 using the same metal wire but using calcium iodide solution.
01.1	What flame colour is produced by copper sulfate solution? [1 mark]

01.2	Calcium compounds produce an orange-red flame colour.
	The student left out an important step before reusing the metal wire.
	The student's method did NOT produce a distinct orange-red flame colour using calcium iodide solution.
	Explain why. [2 marks]

0 1 . 3	The student added sodium hydroxide solution to:
	 copper sulfate solution
	• calcium iodide solution.
	Give the results of the tests. [2 marks]
	Copper sulfate solution
	Calcium iodide solution

01.4	To test for sulfate ions the student added dilute hydrochloric acid to copper sulfate solution.
	Name the solution that would show the presence of sulfate ions when added to this mixture. [1 mark]
01.5	To test for iodide ions the student added dilute nitric acid to calcium iodide solution.
	Name the solution that would show the presence of iodide ions when added to this mixture.
	Give the result of the test. [2 marks]
	Solution
	Result
[Turn ove	er]

0 2	This question is about water.
02.1	In the UK, potable (drinking) water is produced from different sources of fresh water.
	Explain how potable water is produced from fresh water. [4 marks]

0	2	. 2	A different country has:
			very little rainfall
			a long coastline
			• plentiful energy supplies.
			Suggest ONE process this country could use to obtain most of its potable water. [1 mark]

0 2 . 3 Waste water is not fit to drink.

Treatment of waste water produces two substances:

- liquid effluent
- solid sewage sludge.

Draw ONE line from each substance to the way the substance is processed. [2 marks]

SUBSTANCE PROCESS

Aerobic biological treatment

Liquid effluent Anaerobic digestion

Grit removal

Solid sewage sludge | Screening

Sedimentation

BLANK PAGE

TABLE 1 shows information about the disposal of processed solid sewage sludge in the UK in 1992 and in 2010.

TABLE 1

700	Mass of processed solid		udge in milli	sewage sludge in millions of kilograms	
פמו	Used as fertiliser	Sent to landfill	Burned	Other methods	Total
1992	440	130	06	338	866
2010	1118	6	260	26	1413

Darcentage (3 cignificant figures) =	

Suggest ONE reason why the total mass of processed solid sewage sludge increased between 1992 and 2010. [1 mark]	Between 1992 and 2010 the proportion of processed solid sewage sludge used as fertiliser increased.	Suggest TWO reasons why. [2 marks]	7	13
0 2 .	0 2 .			4

BLANK PAGE

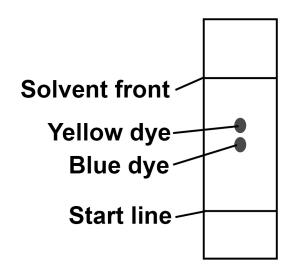
0 3	This question is abo	out hydrocarbons.
	Hexane and hexene containing six carbo	are hydrocarbons on atoms in each molecule.
	Hexane is an alkane	and hexene is an alkene.
03.1	Draw ONE line from formula of that hydr	each hydrocarbon to the ocarbon. [2 marks]
HYDRO	CARBON	FORMULA
		C ₆ H ₈
Hexane		C ₆ H ₁₀
		C ₆ H ₁₂
Hexene		C ₆ H ₁₄
		C ₆ H ₁₆

03.2	Bromine water is added to hexane and to hexene.
	What would be observed when bromine water is added to hexane and to hexene? [2 marks]
	Hexane
	Hexene

03.3	Ethane is an alkane and et	hene is an alkene.
	FIGURE 1 shows the displetormulae of ethane and of	
	FIGURE 1	
	H H H – C – C – H H H Ethane	H H
	Compare ethane with ethe	ne.
	You should refer to:	
	• their structure and bond	ing
	• their reactions.	
	[6 marks]	

_				
-				
-				
-				
-				
-				
-				
-				
_				
-				
_				
-				
<u>-</u>				
[Turn ove	r]			10
				1 10

0 4 This question is about ink.


A student investigated green ink using paper chromatography in a beaker.

The student used water as the solvent.

FIGURE 2 shows the chromatogram obtained.

FIGURE 2

The diagram is not drawn to scale.

0 4 . 1	The R _f value of the yellow dye = 0.60
	The distance moved by the yellow dye = 5.7 cm
	Calculate the distance moved by the solvent. [3 marks]
	Distance moved by the solvent =
	cm

04.2	The green ink contains more than two compounds.
	Suggest ONE reason why only two spots are seen on FIGURE 2, on page 20. [1 mark]

04.3	On the student's chromatogram, the yellow and blue spots are very close together.
	Which TWO ways could increase the distance between the spots? [2 marks]
	Tick (✓) TWO boxes.
	Allow the solvent front to travel further.
	Dry the chromatogram more slowly.
	Use a different solvent.
	Use a larger beaker.
	Use a larger spot of green ink.

The manufacturers of the green ink always use the same proportions of yellow dye and blue dye.
Suggest ONE reason why. [1 mark]

0 4.5	The R _f	value of a dye depends on:	
		solubility of the dye in the solvent attraction of the dye to the paper.	
	value i	will DEFINITELY produce a smaller f the solvent and paper are both ed? [1 mark]	r R _f
	Tick (≁	ONE box.	
		The dye is less soluble in the new solvent and less attracted to the raper.	
		The dye is less soluble in the new solvent and more attracted to the new paper.	'
		The dye is more soluble in the new solvent and less attracted to the repaper.	
		The dye is more soluble in the new solvent and more attracted to the new paper.	N
[Turn over	1		8

This question is about materials used to make food plates. 0

Food plates are made from paper, polymers or ceramics.

TABLE 2 shows information about plates of the same diameter made from each of these materials.

TABLE 2

	Food plate material	erial	
	Paper	Polymers	Ceramics
Raw material	Wood	Crude oil	Mined clay
Number packaged in 10 dm ³ cardboard box	200	100	09
Average number of times used	1	400	1000
Biodegradable?	Yes	No	No
Recyclable?	Yes	Yes	No

0 5 11 TABLE 2 does NOT show information about energy usage.	Suggest TWO pieces of information about energy usage which would help to produce a complete life cycle assessment (LCA) for the three food plate materials. [2 marks]	2	
0			

REPEAT OF TABLE 2

	Food plate material	ərial	
	Paper	Polymers	Ceramics
Raw material	Wood	Crude oil	Mined clay
Number packaged in 10 dm ³ cardboard box	200	100	09
Average number of times used	1	400	1000
Biodegradable?	Yes	No	No
Recyclable?	Yes	Yes	ON

0 5.2 Evaluate the use of these materials for making food plates.

You should use features of life cycle assessments (LCAs).

Use TABLE 2. [4 marks]

	Ī
	1
	
[Turn over]	

				w
arks]				
. [2]				
ı clay.				
d from				
oduce				
ire pro				
ates a				
ld poo				
amic fe				
w cera				
be ho				
)escri				_
0 5.3 Describe how ceramic food plates are produced from clay. [2 marks]	I		I	[Turn over]
0				L L

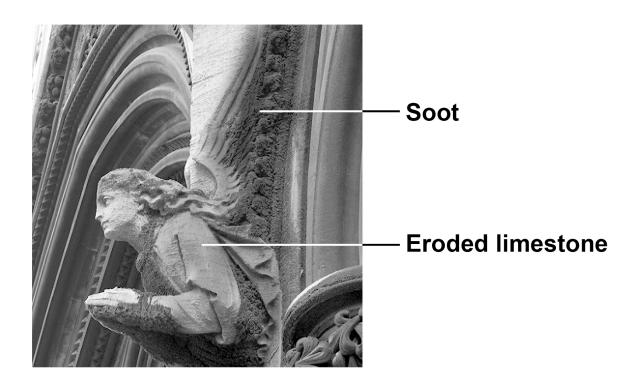

0 6 This question is about atmospheric pollution.

FIGURE 3 shows a limestone carving which has been damaged by atmospheric pollution.

The carving has been:

- blackened by soot
- eroded where the limestone has reacted with atmospheric pollutants.

FIGURE 3

0 6 . 1	plain why soot is formed when some fossil els are burned. [2 marks]				

0 6 . 2	Fossil fuels are burned in car engines.			
	Explain how reducing the amount of sulfur in fossil fuels reduces the erosion of limestone. [4 marks]			

06.3	Oxides of nitrogen are atmospheric pollutants which are formed in car engines.				
	Explain why oxides of nitrogen are formed in car engines. [2 marks]				
[Turn ove	er]	_ _ 3			

0 7 This question is about carboxylic acids.

Carboxylic acids belong to a homologous series.

TABLE 3 shows information about the first three carboxylic acids in this homologous series.

TABLE 3

Name	Formula	pH of a 0.01 mol / dm ³ solution
Methanoic acid		2.91
Ethanoic acid	CH₃COOH	3.39
	СН ₃ СН ₂ СООН	3.44

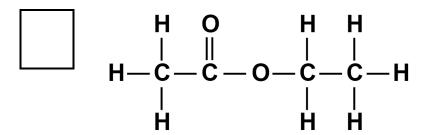
07.1 Complete TABLE 3. [2 marks]

07.2	Ethanoic acid ionises in water.
	The equation for the reaction is:
	$CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$
	Explain how the equation shows that ethanoic acid is a weak acid. [2 marks]

07.3	A student adds a solution of ethanoic acid to zinc carbonate in an open flask on a balance.
	Explain what happens to the mass of the flask and its contents during the reaction. [3 marks]

0 7 . 4	The student compares the rates of the reaction of zinc carbonate with:
	• 0.01 mol/dm ³ methanoic acid
	• 0.01 mol/dm ³ ethanoic acid.
	The rate of the reaction with methanoic acid is greater than the rate of the reaction with ethanoic acid.
	Explain why.
	You should refer to ions in your answer.
	Use TABLE 3 on page 36. [3 marks]

	Ethanoic acid reacts with ethanol to produce an ester.
07.5	Give the name of the ester produced when ethanoic acid reacts with ethanol. [1 mark]


0 7.6 Hexanedioic acid and ethanediol join together to produce a polyester.

Ethanoic acid and ethanol join together in the same way to produce an ester.

Which is the displayed structural formula of the ester produced when ethanoic acid reacts with ethanol? [1 mark]

Tick (√) ONE box.

[Turn over]

0 8

This question is about the rate of the reaction between hydrochloric acid and calcium carbonate.

A student investigated the effect of changing the size of calcium carbonate lumps on the rate of this reaction.

This is the method used.

- 1. Pour 40 cm³ of hydrochloric acid into a conical flask.
- 2. Add 10.0 g of small calcium carbonate lumps to the conical flask.
- 3. Attach a gas syringe to the conical flask.
- 4. Measure the volume of gas produced every 30 seconds for 180 seconds.
- 5. Repeat steps 1 to 4 using 10.0 g of large calcium carbonate lumps.

The student calculated the number of moles of gas from each volume of gas measured.

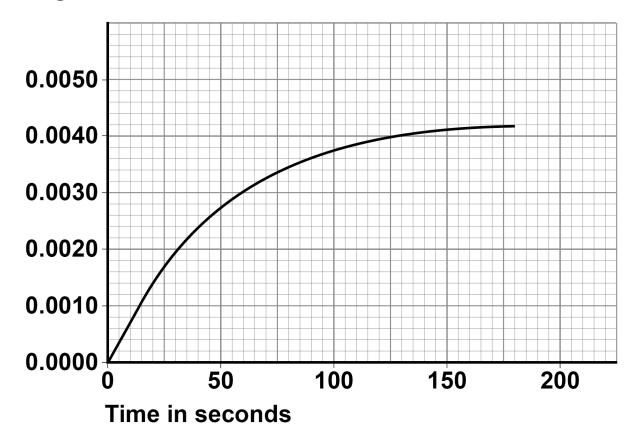
TABLE 4 shows the student's results for large calcium carbonate lumps.

TABLE 4

Time in seconds	Number of moles of gas
0	0.0000
30	0.0011
60	0.0020
90	0.0028
120	0.0034
150	0.0038
180	0.0040

The student plotted the results for small calcium carbonate lumps on FIGURE 4, on the opposite page.

08.1 Complete FIGURE 4.


You should:

- plot the data for large calcium carbonate lumps from TABLE 4
- draw a line of best fit.

[3 marks]

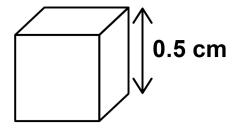
FIGURE 4

Number of moles of gas

08.2	Determine the mean rate of reaction for SMALL calcium carbonate lumps between 20 seconds and 105 seconds.
	Give the unit.
	Use FIGURE 4. [4 marks]
	Mean rate of reaction =
	Unit
[Turn ove	er]

4 9

08.3 The student concluded that the large calcium carbonate lumps reacted more slowly than the small calcium carbonate lumps.

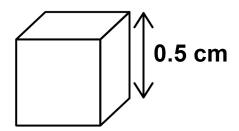

How do the student's results show that this conclusion is correct? [1 mark]

The difference in the rates of reaction of large lumps and of small lumps of calcium carbonate depends on the surface area to volume ratios of the lumps.

FIGURE 5 shows a cube of calcium carbonate.

FIGURE 5

FIGURE 5 is not drawn accurately



08.4	Calculate the surface area to volume ratio of the cube in FIGURE 5.
	Give your answer as the simplest whole number ratio. [3 marks]
	Surface area : volume = :

REPEAT OF FIGURE 5

FIGURE 5 is not drawn accurately

0 8.5 A larger cube of calcium carbonate has sides of 5 cm

Describe how the surface area to volume ratio of this larger cube differs from that of the cube shown in FIGURE 5. [1 mark]

12

0 9	This question is about algae.
	A student:
	 placed algae in water containing dissolved carbon dioxide
	 shone bright light on the algae.
	Gas bubbles were collected as the algae photosynthesised.
09.1	Describe a test that would identify the gas collected.
	Give the result of the test. [2 marks]
	Test
	Result

09.2 Glucose is produced when algae photosynthesise.

Name TWO naturally occurring polymers produced from glucose. [2 marks]

and

FIGURE 6 shows the displayed structural formula of an amino acid called glycine.

FIGURE 6

Tick (✓) ONE box.

09.3 How many functional groups are there in the molecule in FIGURE 6? [1 mark]

•	•
	1
	2
	3
	_

09.4	Glycine reacts by condensation polymerisation to produce a polypeptide and one other substance.
	Name the other substance produced. [1 mark]
09.5	Scientists think that algae may have used gases in Earth's early atmosphere.
	Algae need an element to produce the molecule in FIGURE 6 which is NOT present in water or carbon dioxide.
	Which TWO gases from Earth's early atmosphere could have provided this element? [2 marks]
	and

The development and function of algae are controlled by a naturally occurring polymer.

FIGURE 7 represents the shape and structure of this polymer.

FIGURE 7

Describe the shape and structure of this polymer. [3 marks]

polymer. [3 marks]				
	_			

-				
-				
-				
[Turn ove	r]			11

1 0	This question is about a reversible reaction.
	The reaction between solutions of iron(III) ions (Fe ³⁺) and thiocyanate ions (SCN ⁻) is reversible.
	The ionic equation for the reaction is:
	Fe ³⁺ (aq) + SCN [−] (aq) ⇌ FeSCN ²⁺ (aq)
Colour of	solution: yellow colourless red
	The colour of the equilibrium mixture is orange at room temperature.
10.1	Give the name of the solvent used to dissolve the ions in this reaction. [1 mark]

10.2	A few drops of a colourless solution containing a high concentration of thiocyanate ions (SCN ⁻) are added to the orange equilibrium mixture.
	Explain the colour change observed. [3 marks]

10.3	A water bath is set up at a temperature above room temperature.
	When a test tube containing the orange equilibrium mixture is placed in the water bath, the mixture becomes more yellow.
	Explain what this shows about the energy change for the forward reaction. [3 marks]

1 0].[4]	Explain why a change in pressure does NOT affect the colour of the equilibrium mixture. [2 marks]

10.5	Other metal ions form coloured equilibrium mixtures with thiocyanate ions.		
	Which metal ion could form a coloured equilibrium mixture with thiocyanate ions? [1 mark]		
	Tick (✓) ONE box.		
	Al ³⁺		
	Co ²⁺		
	Mg ²⁺		
	Na ⁺		
END OF	QUESTIONS	10	

Additional page, if required.			
Write the question numbers in the left-hand margin.			

Additional page, if required. Write the question numbers in the left-hand margi			

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
TOTAL			

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/CH/Jun20/8462/2H/E2

