AQA
 I

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 1 Life and Environmental Sciences
Tuesday 12 May 2020
Afternoon
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$	Figure 1 represents a neon atom.

Figure 1

0	$\mathbf{1}$.	$\mathbf{1}$ What is the name of the centre of the atom?

Tick (\checkmark) one box.

Energy level

Isotope

Nucleus \square

$\mathbf{0}$	$\mathbf{1} .2$	$\mathbf{2}$ Which particle has a positive charge?

Tick (\checkmark) one box.

Electron

Neutron

Proton \square

Tick (\checkmark) one box.

Electron
\square

0	$\mathbf{1}$.	$\mathbf{4}$ What is the electronic structure of neon?

Use Figure 1.
Tick (\checkmark) one box.

2,8

2,10

2,8,20

Question 1 continues on the next page

Which equation shows how to calculate the percentage of neon particles in the air?
Tick (\checkmark) one box.
percentage $=\frac{18000000}{100} \times 100$

percentage $=\frac{1000000}{18} \times 100$
\square
percentage $=\frac{18}{1000000} \times 100$ \square

| $\mathbf{0}$ | $\mathbf{1}$ | .6 | Figure $\mathbf{2}$ shows a sign containing neon. The sign is connected to an electrical supply. |
| :--- | :--- | :--- | :--- | The sign glows when the electrical supply is switched on.

Figure 2

What type of electromagnetic radiation is emitted by the neon atoms when the sign is switched on?

Tick (\checkmark) one box.

Gamma rays

Microwaves

Radio waves

Visible light

$\mathbf{0}$	$\mathbf{1}$.7	Some elements emit ultraviolet (UV) radiation when electricity is supplied.

Sun tanning beds emit UV radiation.

Give two health risks of exposure to UV radiation.

1 \qquad
\qquad
2 \qquad
\qquad

| $\mathbf{0}$ | 2 |
| :--- | :--- |\quad Figure 3 shows a human bone cell.

Figure 3

| $\mathbf{0}$ | $\mathbf{2}$. |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Which structure in the cell contains DNA?

Tick (\checkmark) one box.
A

B \square
C \square

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	A student used a microscope to view a cell.

The length of the image of the cell was 40 mm
The real length of the cell was 0.25 mm

Calculate the magnification of the image.
Use the equation:

$$
\text { magnification }=\frac{\text { length of image }}{\text { length of real object }}
$$

\qquad
\qquad
\qquad
Magnification $=\times$

| 0 | $\mathbf{2} .4$ Root hair cells are found on the roots of plants. |
| :--- | :--- | :--- |

Root hair cells do not photosynthesise.

Give one structure found in a leaf cell, but not in a root hair cell.

0	2	5

Tick (\checkmark) two boxes.

$\mathbf{0}$	$\mathbf{3}$	Figure $\mathbf{4}$ shows a mosquito on human skin.

Figure 4

Malaria is a communicable disease.
Mosquitos can transmit malaria when they bite.

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ What is a communicable disease?

Tick (\checkmark) one box.

A disease caused by a faulty allele \square
A disease caused by a pathogen

A disease caused by obesity

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{2}$ Humans have adaptations to defend the body against pathogens. |
| :--- | :--- | :--- | :--- |

Draw one line from each body part to the adaptation that defends against pathogens.
[3 marks]

Adaptation

Has a large surface area
\square

Is a physical barrier

Produces acid to kill pathogens

Secretes mucus to trap pathogens

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ What type of chemical is used to kill mosquitos? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Fungicide

Herbicide

Pesticide

Scientists are trying to reduce the number of people developing malaria by using genetically modified (GM) mosquitos.

| 0 | 3 | $\mathbf{4}$ Mosquitos have 6 chromosomes in each normal body cell. |
| :--- | :--- | :--- | :--- |

How many chromosomes are in each egg cell from a mosquito?
Tick (\checkmark) one box.
3

6

9

12
\square

| 0 | 3 | $\mathbf{5}$ Which statement describes genetic modification? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

A species evolving in two different areas

Genes from one organism being transferred to another organism

Male gametes and female gametes fusing during fertilisation

0	3	6

These GM mosquitos can be released to reduce the population of wild mosquitos.

What is one advantage of using GM technology to reduce the population of wild mosquitos?

Tick (\checkmark) one box.

Decreases the use of chemicals to kill mosquitos

Genes may spread to other insects

Has unknown impacts on the mosquito food web

The high cost of GM technology

Turn over for the next question

0	$\mathbf{4}$

Figure 5

0	4	1
1		

What process produces specialised cells?
Tick (\checkmark) one box.

Classification

Differentiation

Fertilisation

The allele for not having cystic fibrosis is dominant, \mathbf{R}.
The recessive allele is \mathbf{r}.

Tick (\checkmark) one box.

Genome

Heterozygous

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{5}$ Having symptoms of cystic fibrosis is a person's phenotype.

What does the term 'phenotype' mean?
Tick (\checkmark) one box.

All the genetic material of an organism

The observable characteristics of an organism \square
The effect of only the environment on an organism

0	$\mathbf{4}$	6	Two people are planning to have a child.

Complete Figure 6 to show the possible genotypes of the child.

Figure 6

0	$\mathbf{4} .7$	Draw a ring around one of the offspring in Figure 6 that would have cystic fibrosis.

0	$\mathbf{4}$.8	$\mathbf{8}$ What is the percentage chance of the child having cystic fibrosis?

Tick (\checkmark) one box.
$25 \% \quad 50 \% \square 75 \% \square 100 \% \square$

| 0 | 4 | $\mathbf{9}$ New drugs are being developed to treat the symptoms of cystic fibrosis. |
| :--- | :--- | :--- | :--- |

Trials of new drugs are needed to work out the correct dose of the drug to use.

Give one other reason why drugs are trialled before they are used by patients.
Do not refer to dosage in your answer.
\qquad

0	5	Table 1 shows the concentration of some substances outside a cell and inside a cell.

Table 1

	Concentration in arbitrary units	
Substance	Outside the cell	Inside the cell
Chloride ions	116	4
Potassium ions	4	120
Sodium ions	145	12

0	5	1

Choose answers from the box.
Use information from Table 1.

active transport	diffusion	osmosis

Chloride ions move into the cell by \qquad .

Potassium ions move into the cell by \qquad .

0	$\mathbf{5}$.	$\mathbf{2}$ Why do sodium ions move into the cell?

Use information from Table 1.
\qquad
\qquad

| 0 | $\mathbf{5}$. | $\mathbf{3}$ Calculate how many times greater the potassium ion concentration is inside the cell |
| :--- | :--- | :--- | :--- | compared with outside the cell.

\qquad
\qquad
Number of times greater $=$ \qquad

0	5	4	Name the process that releases energy in cells.

0	5	5	Which process needs energy to move a substance into a cell?

Tick (\checkmark) one box.

Active transport

Diffusion

Osmosis

0	5	6	$G i v e ~ t w o ~ f a c t o r s ~ t h a t ~ a f f e c t ~ t h e ~ r a t e ~ o f ~ d i f f u s i o n . ~$

\qquad
2 \qquad

Question 5 continues on the next page

| 0 | $\mathbf{5}$ | $\mathbf{7}$ | Students investigated the change in mass of potato pieces in different concentrations |
| :--- | :--- | :--- | :--- | of sugar solution.

Figure 7 shows some of the equipment used.

Figure 7

Describe a method to investigate the effect of different concentrations of sugar solution on the change in mass of potato pieces.
\qquad

Turn over for the next question

There are no questions printed on this page
 and frequencies.

Electromagnetic

Detecting broken bones

Transmitting TV programmes

Question 6 continues on the next page

A student investigated how the type of surface affects the amount of infrared the surface radiates.

The student used a hollow metal cube.

Four of the surfaces of the cube were different.

This is the method used.

1. Fill the cube with hot water and seal it with a lid.
2. Measure the infrared radiation emitted from each surface using an infrared detector.

Figure 8 shows the equipment used.

Figure 8

0	6	2	Table 2 shows some of the variables in this investigation.

Table 2

Variable	Independent	Dependent	Control
Distance between infrared detector and surface of cube			\checkmark
Starting temperature of water inside cube			
Temperature measured by infrared detector			
Type of surface			

Identify each variable as an independent, dependent or control variable.
Tick (\checkmark) one box in each row on Table 2.
One row has been completed for you.

Question 6 continues on the next page
Table 3 shows the results.

Table 3

Type of surface	Temperature in ${ }^{\circ} \mathrm{C}$
Shiny black	66.5
Matt white	61.0
Matt black	69.0
Shiny silver	26.0

| 0 | 6 | 3 |
| :--- | :--- | :--- | What was the resolution of the infrared detector?

Tick (\checkmark) one box.
$0.5^{\circ} \mathrm{C}$

$1.0^{\circ} \mathrm{C}$

$26.0^{\circ} \mathrm{C}$

$66.5^{\circ} \mathrm{C}$

| 0 | 6 | 4 |
| :--- | :--- | :--- | What was the range of temperatures recorded?

Range $=$ \qquad ${ }^{\circ} \mathrm{C}$ to \qquad ${ }^{\circ} \mathrm{C}$

0	6.	5

You should:

- plot the data from Table 3 as a bar chart
- label each bar.

Figure 9

Type of surface

0	6	6

\qquad
\qquad

Tick (\checkmark) one box.
$f=v \times \lambda$ \square
$v=f \times \lambda$

$$
v=\frac{f}{\lambda}
$$

\square

0	6	8

- a speed of $300000000 \mathrm{~m} / \mathrm{s}$
- a wavelength of 500 m

Calculate the frequency of the radio wave.
Give the unit.
Choose the unit from the box.

hertz	kilograms	metres	seconds

\qquad
\qquad
\qquad
\qquad
\qquad
Frequency = \qquad Unit
In

0	$\mathbf{7}$	Escherichia coli (E. coli) is a species of bacteria that can cause food poisoning.

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$ Which term describes E. coli cells?

Tick (\checkmark) one box.

Algal cells \square
Fungal cells

Prokaryotic cells \square

Some strains of E. coli are resistant to antibiotics.
Table 4 shows the number of infections caused by antibiotic resistant E. coli.
Table 4

Year	Number of infections
2014	9000
2015	10800
2016	11400
2017	12100
2018	13500

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ Calculate the percentage increase in the number of infections caused by |
| :--- | :--- | :--- | :--- | antibiotic resistant E. coli between 2014 and 2018.

Use the equation:
percentage increase $=\frac{\text { number of infections in } 2018-\text { number of infections in } 2014}{\text { number of infections in } 2014} \times 100$
\qquad
\qquad
\qquad
\qquad
Percentage increase $=$ \qquad \%

Antibiotics are used to treat many different bacterial infections.
The government wants scientists to research and develop a new 'antibiotic test' that:

- takes less than 30 minutes
- shows doctors if an antibiotic is needed for an infection
- shows doctors which antibiotic to use.

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{3}$	Suggest two reasons why research into antibiotics is needed.

1 \qquad
\qquad
2 \qquad
\qquad

Question 7 continues on the next page

0	$\mathbf{7}$	$\mathbf{4}$	The new test should mean that fewer people take antibiotics.

What are two effects of fewer people taking antibiotics?
Tick (\checkmark) two boxes.

Antibiotic resistant bacteria are less likely to evolve.

Bacteria will be killed by all types of antibiotic. \square
Fewer bacteria will be exposed to antibiotics.

Fungi and viruses will not be killed by antibiotics.

Natural selection in bacteria will be faster.

0	$\mathbf{7} .5$	A vaccine against E. coli is being trialled.

Suggest what this vaccine contains to cause immunity to E. coli.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ Describe two ways the arrangement of particles in a solid is different from the |
| :--- | :--- | :--- | arrangement of particles in a liquid.

You should answer in terms of the particle model.

1
\qquad
2 \qquad
\qquad

Liquid water can freeze to form solid ice.
Grit is spread on roads to reduce the formation of ice.
Grit contains a mixture of salt and sand.

0	8	2
2		

\qquad
\qquad
\qquad
\qquad

Question 8 continues on the next page

Figure 10 shows the mass of ice melted by 1 kg of grit at different temperatures.

Figure 10

0	$\mathbf{8}$.	3	Draw a line of best fit on Figure 10.

0	8	4	Predict the mass of ice that 1 kg of grit would melt at $-20^{\circ} \mathrm{C}$

Use Figure 10.
\qquad kg

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{5}$ Describe the effect of changing temperature on the mass of ice that 1 kg of grit |
| :--- | :--- | :--- | :--- | can melt.

Use Figure 10.
\qquad
\qquad
\qquad
\qquad

Some roads are built with temperature sensors in the surface.
The sensors indicate when to spread grit on the roads.

Suggest one advantage of having temperature sensors in roads rather than relying on weather forecasts.
\qquad

0	$\mathbf{9} .1$	The chemical composition of fatbergs can be tested.

Describe how a sample from a fatberg could be tested for fat and for protein.

Test for fat \qquad
\qquad
Positive result for fat \qquad

Test for protein \qquad
\qquad
Positive result for protein \qquad
Question 9 continues on the next page

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{2}$ Some fats in fatbergs come from undigested food in faeces. |
| :--- | :--- | :--- | :--- |

Most fat that humans eat is digested.

Give the two products of fat digestion.

1

2 \qquad

$$
0
$$

It may be possible to use fatbergs as a fuel in power stations.

0	9	3	Burning 1.0 kg of fatbergs transfers 40 MJ of energy.

A power station could burn 1250 kg of fatbergs each hour.

Calculate the energy output from the power station in 1 year.

1 year $=8760$ hours
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Energy output in 1 year = MJ

| 0 | $\mathbf{9} .4$ | Evaluate burning fatbergs in power stations compared with burning coal in |
| :--- | :--- | :--- | :--- | power stations.

\qquad

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2020 AQA and its licensors. All rights reserved.

