AQA

Surname

Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.

GCSE

COMBINED SCIENCE: SYNERGY
Higher Tier Paper 2
Life and Environmental Sciences
 8465/2H

Wednesday 20 May 2020 Afternoon Time allowed: 1 hour 45 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

2

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO
 DO SO

[1 mark] $\stackrel{\text { No }}{\substack{0 \\ 3 \\ 3 \\ 0}}$
 $\stackrel{\text { ¹ }}{ \pm}$

Q

[Turn over] $\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{x}}}}}}}}}}$

6

||||||||||||||
[1 mark] wave?
 둥
0
0
0
0
0
3
3 $\stackrel{0}{\leftrightarrows}$

A teacher demonstrated waves on a string.
FIGURE 2 shows the apparatus used.
FIGURE 2

This is the method used.

1. Switch on the signal generator and vibration generator so
the string vibrates up and down.
2. Move the wooden bridge until a clear wave pattern is formed
between the wooden bridge and the vibration generator.
3. Use a metre rule to measure the length of the string
between the wooden bridge and the vibration generator.
4. Record the frequency of the wave from the signal
generator.
5. Record the number of loops in the wave pattern. The wave
pattern shown in FIGURE 2 has one loop.
6. Change the frequency on the signal generator until a new
wave pattern is formed.
7. Repeat steps 4 to 6 .
$|||||||||||||l|$
[Turn over]

10

$0 \mid 1.3$
Give ONE

[Turn over]
12

0 1 A
The length of the string between the vibration generator and
the wooden bridge was about 1.5 m
The teacher used a metre rule to measure the length of
the string.
Suggest TWO reasons why making an accurate measurement
was difficult. [2 marks]
1
2

13

TABLE 1, on the opposite page, shows the results.

Give ONE conclusion about frequency and wavelength from
the data in TABLE 1. [1 mark]
TABLE 1

$\begin{aligned} & \text { Frequency } \\ & \text { in } \mathrm{Hz} \end{aligned}$	$\stackrel{$ Wave pattern on 1.50 m string $}{\longleftrightarrow}$	Number of loops in wave pattern	Wavelength in m
10		1	3.00
20		2	1.50
30		3	1.00
40		4	0.75
50	\cdots	5	X

$||||||||||||\mid$ |Turn over]

16

REPEAT OF TABLE 1

Frequency in Hz	$\stackrel{\substack{\text { Wave pattern } \\ \text { on } 1.50 \mathrm{~m} \text { string }}}{ }$	Number of loops in wave pattern	Wavelength in m
10	$\xrightarrow{-}$	1	3.00
20		2	1.50
30		3	1.00
40	\cdots	4	0.75
50	\cdots	5	X

17
011.6
Each loop of the wave pattern is the length of half
a wavelength.
Determine wavelength X in TABLE 1. [2 marks]
Wavelength $X=\quad \mathrm{m}$
[Turn over]

$0 \mid 1 \cdot 7$
Calculate the
was 30 Hz
Give your a
Use the Phys

Calculate the period of the wave when the frequency
was 30 Hz
Give your answer to 2 significant figures.
Use the Physics Equations Sheet. [3 marks]
\longrightarrow
\square

$\left.\begin{array}{l}0.1 \\ 0\end{array}\right]$
Calculate the period of the wave when the frequency
was 30 Hz
Give your answer to 2 significant figures.
Use the Physics Equations Sheet. [3 marks]

$0 \mid 2$

Plants absorb light to photosynthesise.

| 0 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Complete the word equation for photosynthesis. [1 mark]

+ water
+ glucose

[Turn over]

20
Light intensity affects the rate of photosynthesis.

FIGURE 3 shows some of the equipment used to measure the rate of photosynthesis.

FIGURE 3

Pondweed

21

0 2. 2

Describe a method to investigate the effect of light intensity on the RATE of photosynthesis.

Use the equipment in FIGURE 3 and other laboratory equipment. [6 marks]
\qquad
\qquad
\qquad
\qquad

[Turn over]

22

23

BLANK PAGE

[Turn over]

24

Algal cells photosynthesise.
Scientists investigated the effect of light intensity on algal cells.

The algal cells were placed in different light intensities.

TABLE 2 shows the number of EXTRA algal cells after two days.

TABLE 2

Light intensity in lux	Number of EXTRA algal cells after two days
0	no extra cells
250	1.00×10^{6}
500	1.65×10^{6}
750	2.15×10^{6}
1000	2.40×10^{6}
1250	2.50×10^{6}
1500	2.50×10^{6}

25

\section*{| 0 | 2 |
| :--- | :--- | :--- |}

The initial number of algal cells was 200000

Calculate the total number of algal cells after two days when the light intensity was 500 lux [2 marks]

Total number of algal cells =

[Turn over]

26

0	2.

Plot the data from TABLE 2 on FIGURE 4.
The first two points have been plotted.
Draw a line of best fit on the opposite page. [3 marks]

REPEAT OF TABLE 2

Light intensity in lux	Number of EXTRA algal cells after two days
0	no extra cells
250	1.00×10^{6}
500	1.65×10^{6}
750	2.15×10^{6}
1000	2.40×10^{6}
1250	2.50×10^{6}
1500	2.50×10^{6}

27

FIGURE 4

Number of
extra algal
cells $\times 1^{6}$

Light intensity in lux
[Turn over]

28
REPEAT OF TABLE 2

Light intensity in lux	Number of EXTRA algal cells after two days
0	no extra cells
250	1.00×10^{6}
500	1.65×10^{6}
750	2.15×10^{6}
1000	2.40×10^{6}
1250	2.50×10^{6}
1500	2.50×10^{6}

29

\section*{| 0 | 2 |
| :--- | :--- |}

Give TWO conclusions from the results. Use information from TABLE 2. [2 marks] 1
\qquad
\qquad
2

[Turn over]

02.6

Explain how an increase in temperature from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ would affect the number of algal cells. [2 marks]
\qquad
\qquad
\qquad

Water is cycled through the environment.

| 0 | 3 |
| :--- | :--- | .1

Rain provides fresh water.
Fresh water in the ground contains small amounts of dissolved substances.

Suggest ONE source of these dissolved substances. [1 mark]
[Turn over]

FIGURE 5, on the opposite page, shows the total monthly rainfall from November 2017 to October 2018 in the UK.

0	3

Give TWO conclusions you can make from the data shown in FIGURE 5. [2 marks]
1

2
\qquad
\qquad

FIGURE 5
 Total
 rainfall
 in mm

$\begin{array}{llllll}\text { Dec } & \text { Feb } & \text { Apr } & \text { Jun } & \text { Aug } & \text { Oct } \\ 17 & 18 & 18 & 18 & 18 & 18\end{array}$
Month and year

34

BLANK PAGE

Determine the percentage increase in rainfall in the month of January 2018 compared to the month of November 2017. [3 marks]
\qquad
\qquad
\qquad
\qquad

Percentage increase $=$

[Turn over]

$0 \mid 3.4$

Suggest ONE reason why scientists cannot accurately predict the total rainfall in the UK for November 2020. [1 mark]

BLANK PAGE

[Turn over]

A student produced distilled water from fresh water.

FIGURE 6 shows the apparatus used.
FIGURE 6
Thermometer

\section*{| 0 | 3 | 5 |
| :--- | :--- | :--- |}

The student stated that the thermometer measured the boiling point of water.

The reading on the thermometer was $102{ }^{\circ} \mathrm{C}$

Describe how the apparatus can be changed to obtain the correct value for the boiling point of water.

Give ONE reason why the change is needed to obtain the correct value.
[2 marks]
Change

Reason

40

0	3.

The student collected less distilled water than expected from a sample of fresh water.

Suggest ONE change to the apparatus to increase the volume of distilled water collected from the fresh water sample.

Give ONE reason why this suggestion would increase the volume of distilled water collected. [2 marks]

Change

Reason

Sea water in some parts of the world is used to produce potable water.

Distillation can be used to desalinate sea water.

0	3.

Explain ONE disadvantage of using distillation to obtain potable water. [2 marks]
[Turn over]

42

$0 \mid 3.8$

Name ONE other method used for desalination.

Do NOT refer to distillation in your answer. [1 mark]

14

43

BLANK PAGE

[Turn over]

$0 \mid 4$

FIGURE 7 shows part of a food web.
FIGURE 7

45

0	4

There are four levels of feeding relationship shown in the food web in FIGURE 7.

Algae are at level 1 in the food web.
Why is it difficult to identify the level of the loggerhead turtle in the food web? [1 mark]
[Turn over]

46

$0 \mid 4$. 2

Explain the effects a decrease in the population of clams could have on the other organisms in FIGURE 7, on page 44. [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

47

\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

\section*{| 0 | 4 |
| :--- | :--- |}

Female loggerhead turtles lay their eggs in nests on sandy beaches.

TABLE 3 shows how the temperature of the nest affects the sex of the loggerhead turtles.

TABLE 3

Temperature of nest in ${ }^{\circ} \mathrm{C}$	Sex of loggerhead turtles hatching from eggs
>29	more females than males
29	equal numbers of males and of females
<29	more males than females

Explain how the continued use of fossil fuels could affect the population of loggerhead turtles.

Use information from TABLE 3. [4 marks] $|||||||||||||||\mid$

49
\qquad
||L||||ll [Turn over]
50
METHOD 2

1. Hold a metre rule so the bottom of the rule is level with the
top of the other student's thumb.
2. Let go of the metre rule.
3. The other student catches the metre rule.
4. Record the position of the student's thumb on the
metre rule.
5. Convert the position on the metre rule to a reaction time
using a conversion table.
6. Repeat steps 1 to 5 another two times.
[Turn over]

52
TABLE 4 shows the results.
[Turn over]
54

In Method 2 the students react when they see the metre
rule drop.
A sound wave is a longitudinal wave.
wave
Visible light is a transverse wave.
Describe the difference between a longitudinal wave and a
transverse wave. [2 marks]
\longrightarrow

[^0]56

\section*{| 0 | 5 | 4 |
| :--- | :--- | :--- |}

The nervous system coordinates reflex actions.

A person accidentally touches a hot object.

The person moves their hand away quickly.

Describe how information about the hot object is detected, AND how the information reaches the muscles in the arm. [4 marks]
\qquad
\qquad
\qquad
\qquad

06

This question is about breathing and gas exchange.

FIGURE 8 shows a person using a peak flow meter.

FIGURE 8

Peak flow is how quickly air can be breathed out of the lungs.

TABLE 5, on the opposite page, shows the peak flow of a person on two different days.

TABLE 5

| Day | $\begin{array}{l}\text { Peak flow in dm } \\ \\ \text { per minute }\end{array}$ | | $\begin{array}{l}\text { Mean peak } \\ \text { flow in dm }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- |
| | | | |$\}$

016.1

The person has different peak flow results on Day 1 and Day 2.

Suggest ONE reason why peak flow was lower on the second day. [1 mark]

60

BLANK PAGE

61

\section*{| 0 | 6 |
| :--- | :--- |
 Calculate value X for Day 2. [3 marks]}

\qquad
\qquad
\qquad
\qquad
\qquad
$\mathrm{x}=$
dm^{3} per minute

[Turn over]

62

\section*{| 0 | 6 |
| :--- | :--- | :--- |}

FIGURE 9 shows part of the lungs.
There are many alveoli in the lungs.
Alveoli provide a large surface area for gas exchange.

FIGURE 9

63

Explain how TWO other adaptations of the alveoli allow efficient gas exchange.

Do NOT refer to surface area in your answer. [4 marks]
1
\qquad
\qquad
\qquad
\qquad

2
\qquad
\qquad
\qquad
\qquad

64

BLANK PAGE

65

$0 \mid 7$

Endocrine glands produce hormones.

0.7 .1

Which hormone stimulates basal metabolic rate? [1 mark]
[Turn over]

66

FIGURE 10 shows how concentrations of sex hormones in the blood vary during a 28-day menstrual cycle.

FIGURE 10
Concentration of sex hormone in the blood in arbitrary units

Day

67

07.2

Which hormone does X represent?
[1 mark]

Tick (\checkmark) ONE box.

FSH

Progesterone

Testosterone

[Turn over]

68

07.3

Which hormone does \mathbf{Z} represent?
[1 mark]

Tick (\checkmark) ONE box.

FSH

Progesterone

Testosterone

69

\section*{| 0 | 7. |
| :--- | :--- |}

Describe TWO effects of oestrogen between day 10 and day 12 of the menstrual cycle. [2 marks]
1

2

[Turn over]

BLANK PAGE

In vitro fertilisation (IVF) is a fertility treatment.

0	7

Hormones are used in IVF treatment.
Explain how different hormones are used to help a woman become pregnant.
[3 marks]
[Turn over]
077.6

TABLE 6 shows information about IVF success rates.

TABLE 6

Age of woman in years	Percentage (\%) of IVF treatments resulting in pregnancy
<35	29
$35-37$	23
$38-39$	15
$40-42$	9
$43-44$	3
>44	2

A 35-year-old woman with fertility problems wants a child.

Suggest why she should start IVF treatment as soon as possible.

You MUST include data from TABLE 6 in your answer. [1 mark]
[Turn over]

74

08

A scientist investigated the effect of exercise on reducing the risk of some medical conditions.

- The investigation involved two groups of people.
- One group walked quickly and the other group ran.
- The people in the walking group exercised for more time than the people in the running group.
- Each group transferred the same amount of energy.

TABLE 7, on the opposite page, shows data from the investigation.

75

TABLE 7

Medical condition	Percentage (\%) reduction in risk of developing the medical condition	
	Walking quickly	Running
Coronary heart disease	9.3	4.5
Diabetes	12.3	12.1
High blood pressure	7.2	4.2
High concentration of cholesterol in the blood	7.0	4.3

[Turn over]

76

BLANK PAGE

77

| 0.1 |
| :--- | :--- |

Name TWO factors that should be controlled.

Do NOT refer to amount of energy transferred, age or sex in your answer. [2 marks]
1

2
\qquad

[Turn over]

\section*{| 0 | 8. |
| :--- | :--- | :--- |}

Blood pressure measures how hard the blood is forced against the walls of the arteries.

Regular exercise makes the heart muscle stronger.

A stronger heart can pump more blood with less effort so the forces on the walls of the arteries decrease.

Suggest why walking reduces the risk of high blood pressure more than running reduces the risk of high blood pressure. [1 mark]
\qquad
\qquad

79

08.3

Explain how a high concentration of cholesterol in the blood can cause coronary heart disease. [2 marks]
\qquad

A student walked quickly for 15 minutes.
FIGURE 11, on page 80, shows the effect walking quickly had on the student's heart rate.
[Turn over]

FIGURE 11

Heart rate
 in beats
 per minute

0.8 .4

Determine the rate of increase in heart rate of the student at 8.5 minutes.

Use FIGURE 11. [4 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rate of increase $=$
beats/min ${ }^{2}$
[Turn over]

82

08.5

Explain why heart rate needs to increase during exercise. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \square

BLANK PAGE

[Turn over]

84

\square
Bananas from wild banana plants are not eaten by humans.

Edible banana plants are grown commercially.

Humans can eat bananas from edible banana plants because they do not contain seeds.

The edible banana plant evolved from the wild banana plant.

FIGURE 12, on the opposite page, shows how scientists think the edible banana plant may have evolved.

85

FIGURE 12

Wild banana plant A

Wild banana plant B

[Turn over]

86

BLANK PAGE

What is process X in FIGURE 12 on page 85? [1 mark]

Tick (\checkmark) ONE box.

Meiosis

Mutation

Natural selection

[Turn over]

88

0 . 9.2

Explain why the edible banana plant cannot produce gametes. [2 marks]

\section*{| 0 | 9 |
| :--- | :--- |}

Cloning is used to reproduce edible banana plants.

The cloned cells divide by mitosis.
Describe the process of mitosis. [4 marks]

89
\qquad
IIIIIIIIIIII [Turn over]

90

\section*{| 0 | 9. |
| :--- | :--- |}

Banana plants can become infected by the TR4 fungus.

The fungus enters the plant through the roots and grows within the xylem vessels.

The xylem vessels become blocked and the leaves turn yellow.

Describe why blockage of the xylem vessels causes the leaves to turn yellow. [1 mark]
\qquad
\qquad
\qquad

91

BLANK PAGE

[Turn over]

92

0	9

TR4 fungus is a threat to the global banana industry.

Some wild banana plants have a gene for resistance to the TR4 fungus.

What could scientists do to protect edible banana plants from the TR4 fungus? [1 mark]

93

Tick (\checkmark) ONE box.

Allow banana plants to breed by sexual reproduction.

Allow plants with TR4 resistance to breed with edible banana plants.

Selectively breed edible banana plants that have resistance to TR4.

\square Transfer the gene for TR4 resistance into edible plants.

END OF QUESTIONS

94

Additional page, if required. Write the question numbers in the left-hand margin.

95

Additional page, if required. Write the question numbers in the left-hand margin.

96

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/SB/Jun20/8465/2H/E2

[^0]: [Turn over]

