$A Q A R$

Please write clearly in block capitals.
\square Candidate number

Surname \qquad
Forename(s) \qquad
Candidate signature \qquad

GCSE

Foundation Tier Paper 3 Physical sciences

Monday 11 June 2018
Morning
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

0	1	A teacher extracted copper from copper oxide.

This is the method used.

1. Mix 1.30 g of zinc and 1.59 g of copper oxide.
2. Heat the mixture strongly.
3. When the mixture starts to glow, stop heating.
4. Let the glow spread through the mixture.
5. Leave the mixture to cool.

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{1}$ This reaction is exothermic.

Which part of the method shows the reaction is exothermic?
Tick one box.

Mix zinc and copper oxide \square
Heat the mixture

Let the glow spread \square
Leave to cool

The equation for the reaction between zinc and copper oxide is:

$$
\underset{1.30 \mathrm{~g}}{\mathrm{Zn}(\mathrm{~s})}+\underset{1.59 \mathrm{~g}}{\mathrm{CuO}(\mathrm{~s})} \rightarrow \underset{1.62 \mathrm{~g}}{\mathrm{ZnO}(\mathrm{~s})}+\mathrm{Cu}(\mathrm{~s})
$$

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | 1.30 g of zinc fully reacted with 1.59 g of copper oxide to produce 1.62 g of zinc oxide. l . ${ }^{2}$. |
| :--- | :--- | :--- | :--- | What mass of copper was produced?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{3}$ What is the physical state of zinc oxide in the reaction?

Tick one box.

Aqueous

Gas

Liquid

Solid

$\mathbf{0}$	$\mathbf{1} .4$	Which substance has been oxidised in the reaction?

Tick one box.

Copper

Copper oxide

Zinc

Zinc oxide

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{5}$ What type of reaction takes place when zinc reacts with copper oxide?

Tick one box.

Combustion

Crystallisation

Displacement

Neutralisation

Question 1 continues on the next page

Copper is a metal.

| $\mathbf{0}$ | $\mathbf{1} .6$ Which structure represents the arrangement of atoms in pure copper? |
| :--- | :--- | :--- |

A

B

C

Tick one box.

C

D

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{7}$	Copper is used in electrical wiring.

Give one reason why.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{8}$	In the UK, 40% of the copper we use is recycled copper.

The other 60% is copper obtained by mining.
What is the simplest ratio of recycled copper to copper obtained by mining?
Tick one box.
$2: 3$

$2: 5$
$4: 10$

$6: 4$

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{9}$ What are two advantages of recycling copper? |
| :--- | :--- | :--- | :--- |

Tick two boxes.

Conserves copper ores

Increase in greenhouse gases

Less energy used

More jobs for miners

More space used at landfill

-
 box

$\mathbf{0}$	$\mathbf{2}$ This question is about Group 1 metals.

Figure 1 shows the melting points of Group 1 metals plotted against their atomic number.

Figure 1

| $\mathbf{0}$ | $\mathbf{2} .1$ | Describe the trend shown by the melting points of Group 1 metals as the atomic |
| :--- | :--- | :--- | number increases.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ Determine the atomic number and melting point of caesium.

Use Figure 1.

Atomic number of caesium $=$ \qquad Melting point of caesium $=$ \qquad ${ }^{\circ} \mathrm{C}$

Lithium is a Group 1 metal.

| 0 | 2 | .3 |
| :--- | :--- | :--- | :--- | A lithium atom can be shown as ${ }_{3}^{7} \mathrm{Li}$.

How many electrons does the outer shell of a lithium atom contain?
Tick one box.

1

3

4

7

$\mathbf{0}$	$\mathbf{2} .4$	Lithium reacts with oxygen to produce lithium oxide.

Draw one line from each substance to the correct description of the substance.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ Balance the equation for the reaction of lithium with oxygen. |
| :--- | :--- | :--- | :--- |

0	$\mathbf{2}$	6
6		

Tick one box.

Covalent

Ionic

Metallic

Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{Li}=7 \quad \mathrm{O}=16$
\qquad
\qquad
\qquad
Relative formula mass $=$ \qquad

Turn over for the next question

| 0 | 3 | The stopping distance of a car depends on the thinking distance and the |
| :--- | :--- | :--- | braking distance.

Give two factors that can affect reaction time.

1

2 \qquad

$\mathbf{0}$	$\mathbf{3} .2$	$\mathbf{2}$ Give one factor that can affect the braking distance.

\qquad
\qquad

A car was travelling at $13 \mathrm{~m} / \mathrm{s}$
The driver's reaction time was 0.6 s

Calculate the thinking distance.
Use the equation:

$$
\text { distance travelled }=\text { speed } \times \text { time }
$$

\qquad
\qquad
\qquad
Thinking distance $=$ \qquad m

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{4}$	The braking distance of the car was 14.0 m

What was the stopping distance of the car?

Stopping distance $=$
\qquad
\qquad
\qquad m

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{5}$ What is the link between speed and braking distance?

Complete the sentence.

The greater the speed, the \qquad

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{6}$ If a large braking force is applied, the car decelerates and stops in a very |
| :--- | :--- | :--- | short distance.

Give two disadvantages of applying a large braking force.

1 \qquad
\qquad

2 \qquad
\qquad

Turn over for the next question

0	$\mathbf{4}$	One alloy contains iron, chromium and nickel.

Figure 2 shows the mass of iron and the mass of nickel in 80 g of this alloy.
Figure 2

0	$\mathbf{4} .1$	Determine the mass of iron and nickel in 80 g of the alloy.

Use Figure 2.

Mass of iron $=$ \qquad g

Mass of nickel = \qquad g

0	$\mathbf{4}$.2
2	Calculate the mass of chromium in 80 g of the alloy.	

Draw a bar on Figure 2 to show the mass of chromium in 80 g of the alloy.
\qquad
\qquad
Mass of chromium $=$ g

0	$\mathbf{4}$	$\mathbf{3}$ What mass of iron is present in $\mathbf{0 . 8 0} \mathbf{~ k g}$ of the alloy?

Give your answer in grams.
\qquad
\qquad
Mass of iron =
$\begin{array}{lll}0 & \mathbf{4} .4 & \mathbf{4} \text { What is an alloy? }\end{array}$
\qquad
\qquad

0	4	5	Give one reason why alloys are used instead of pure metals.

\qquad
\qquad

0	4	6	Iron and nickel are both magnetic metals.

Which is also a magnetic metal?
Tick one box.

Cobalt

Copper

Sodium

Zinc

A student plotted the magnetic field pattern around a bar magnet.
Figure 3 shows the magnetic field pattern.
Figure 3

0	4	$\mathbf{7}$
Complete the sentence.		

Choose the answer from the box.

induced permanent temporary

Bar magnets produce their own magnetic fields.
Bar magnets are described as \qquad magnets.

| 0 | $\mathbf{4} .8$ Which statement about the magnetic field around a bar magnet is correct? |
| :--- | :--- | :--- |

Tick one box.

The magnetic field is the same strength all around the magnet.

The magnetic field is strongest at the poles of the magnet.

The magnetic field is strongest near the middle of the magnet.

| 0 | 4 | .0 | This is the start of a method used to plot a magnetic field pattern around a |
| :--- | :--- | :--- | :--- | bar magnet.

1. Place the magnet on a piece of paper.
2. Draw around the magnet.
3. Mark a dot by a pole of the magnet.
4. Place the compass on the dot.

Figure 4 shows the apparatus after steps 1-4.

Figure 4

Describe the rest of the method to plot the magnetic field pattern.
\qquad

Turn over for the next question

$\mathbf{0}$	$\mathbf{5}$	A student investigated the rate of reaction of magnesium with dilute hydrochloric acid.

This is the method used.

1. Add $50 \mathrm{~cm}^{3}$ of dilute hydrochloric acid to a conical flask.
2. Add 0.2 g of magnesium ribbon to the dilute hydrochloric acid in the conical flask.
3. Attach a gas syringe to the conical flask.
4. Record the volume of gas in the gas syringe every 10 seconds.

Figure 5 shows the student's results.
Figure 5

Use Figure 5 and the equation:

$$
\text { mean rate of reaction }=\frac{\text { volume of gas produced after } 10 \text { seconds }}{\text { time taken }}
$$

\qquad
\qquad
\qquad
Mean rate of reaction $=$ \qquad

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{2}$ What is the unit for the mean rate of the reaction calculated in Question 05.1?

Tick one box.

$\mathrm{cm}^{3} / \mathrm{s}$	g / s	$\mathrm{s} / \mathrm{cm}^{3}$	$\mathrm{~s} / \mathrm{g}$
\square	\square	\square	\square
	\square	\square	\square

| $\mathbf{0}$ | $\mathbf{5} .3$ | Give two conclusions you can make about the reaction from 90 s to 120 s |
| :--- | :--- | :--- | Use Figure 5.

1 \qquad
\qquad
2 \qquad
\qquad

The student repeated the method using magnesium powder instead of magnesium ribbon. All other variables were kept the same.

| 0 | 5 | 4 |
| :--- | :--- | :--- | What is the independent variable in the investigation?

Tick one box.

Surface area of magnesium

Temperature of reaction

Volume of gas collected

Volume of hydrochloric acid \square

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ Sketch a line on Figure 5 to show the expected results for the experiment using |
| :--- | :--- | :--- | :--- | magnesium powder.

| 0 | 6 | A teacher demonstrated the temperature change when hydrochloric acid is added to |
| :--- | :--- | :--- | sodium hydroxide.

This is the method used.

1. Add $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution to a polystyrene cup.
2. Measure the temperature of the sodium hydroxide solution.
3. Add $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid to the sodium hydroxide solution.
4. Stir the solution.
5. Measure the maximum temperature of the solution.

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{1}$ Draw one line from each measurement to the most suitable piece of equipment to use |
| :--- | :--- | :--- | to make the measurement.

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{2}$	The teacher did the experiment four times.

Table 1 shows the teacher's results.

Table 1

Experiment	Maximum temperature rise in ${ }^{\circ} \mathrm{C}$
1	6.1
2	7.8
3	6.1
4	6.4

Calculate the mean maximum temperature rise.
Do not use the anomalous result in your calculation.
\qquad
\qquad
\qquad
\qquad
Mean maximum temperature rise $=$ \qquad ${ }^{\circ} \mathrm{C}$

$\mathbf{0}$	6.	$\mathbf{3}$ How could the accuracy of the experiment be improved?

Tick one box.

Add $20.0 \mathrm{~cm}^{3}$ of hydrochloric acid

Use a lid on the polystyrene cup \square
Use a metal beaker

Use a thermometer with a resolution of $1^{\circ} \mathrm{C}$ \square

Question 6 continues on the next page

The reaction between hydrochloric acid and sodium hydroxide is a neutralisation reaction.

The reaction produces a salt and one other product.

$\mathbf{0}$	6	4
$\mathbf{4}$	Complete the word equation for the reaction.	

hydrochloric acid + sodium hydroxide \longrightarrow \qquad $+$ \qquad

$\mathbf{0}$	$\mathbf{6} .5$	$\mathbf{5}$ Universal indicator is used to measure the pH of solutions.

Hydrochloric acid is pH 1
Sodium hydroxide is pH 13
Draw one line from the pH to the colour of universal indicator in a solution with that pH . [2 marks]
pH
Colour of universal indicator
green

> purple
red
yellow

$\mathbf{0}$	$\mathbf{7}$	An athlete trains to improve his fitness by walking, cycling and running.

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$ What is a typical mean speed for a person walking?

Tick one box.
$1.5 \mathrm{~m} / \mathrm{s} \quad \square$
$3.0 \mathrm{~m} / \mathrm{s}$

$4.5 \mathrm{~m} / \mathrm{s}$

$6.0 \mathrm{~m} / \mathrm{s}$

$\mathbf{0}$	$\mathbf{7}$.

Tick one box.
$1.5 \mathrm{~m} / \mathrm{s}$ \square
$3.0 \mathrm{~m} / \mathrm{s}$

$4.5 \mathrm{~m} / \mathrm{s}$

$6.0 \mathrm{~m} / \mathrm{s}$

The athlete takes part in a race on a straight, horizontal running track.
Figure 6 shows the velocity-time graph for the athlete. A, B, C, D and E represent points in the race.

Figure 6

\qquad
Time at $\mathbf{D}=$ \qquad s

0	$\mathbf{7} .4$	$\mathbf{4}$

After point \mathbf{E}, the athlete has a constant deceleration.
The athlete stops 14 seconds after the start of the race.
Complete Figure 6 to show the motion of the athlete after point \mathbf{E}.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{5}$ Which section of the graph in Figure 6 shows the athlete moving at constant velocity? |
| :--- | :--- | :--- | :--- |

[1 mark] Tick one box.

A-B $\quad \square$
B-C

C-D

D-E

| $\mathbf{0}$ | $\mathbf{7} .6$ Which section of the graph in Figure 6 represents a part of the race where the |
| :--- | :--- | :--- | resultant force on the athlete is zero?

Tick one box.

Core

[

A-B \square
B-C \square

C-D \square
D-E \square

Question 7 continues on the next page

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{7}$	What does the area under a velocity-time graph represent?

Tick one box.

Acceleration

Distance travelled

Energy

Speed

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{8}$	Write the equation which links acceleration, mass and resultant force.

\qquad
\qquad
 His velocity increased from $0 \mathrm{~m} / \mathrm{s}$ to $11.6 \mathrm{~m} / \mathrm{s}$

Calculate the acceleration of the athlete.
Use the equation:

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }}
$$

\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
Turn over for the next question Turn over

0	8	This question is about hydrogen chloride.

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1}$	A hydrogen atom contains 1 electron and a chlorine atom contains 17 electrons.

Complete Figure 7 to show a dot and cross diagram for a hydrogen chloride molecule.

Show the outer electrons only.

Figure 7

Hydrogen gas $\left(\mathrm{H}_{2}\right)$ reacts with chlorine gas to produce hydrogen chloride.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{2}$ | $\mathbf{2}$ Complete the balanced chemical equation for the reaction between hydrogen |
| :--- | :--- | :--- | :--- | and chlorine.

$$
\mathrm{H}_{2}+\longrightarrow \longrightarrow
$$

Figure 8 shows the reaction profile diagram for the reaction between hydrogen and chlorine.

Figure 8

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{3}$ What do \mathbf{A} and \mathbf{B} represent on Figure 8?

A
B \qquad

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{4}$ How does the reaction profile diagram show that the reaction is exothermic?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{8} .5$	$\mathbf{5}$ Hydrogen chloride gas dissolves in water to form hydrochloric acid.

Hydrochloric acid contains hydrogen ions and chloride ions.
Explain why hydrogen chloride gas does not conduct electricity but hydrochloric acid is able to conduct electricity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

 box

| $\mathbf{0}$ | $\mathbf{9}$ When a metal carbonate reacts with an acid, a salt, carbon dioxide and water |
| :--- | :--- | :--- | are produced.

0	9	1

Give the result of the test.

Test \qquad
\qquad
Result \qquad
\qquad

| 0 | $\mathbf{9} .2$ | Describe how to make pure dry crystals of magnesium chloride from |
| :--- | :--- | :--- | magnesium carbonate and a dilute acid.

In your method you should name the apparatus and reagents you plan to use.
\qquad

| $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | National Grid.

Not all of this energy is supplied to consumers. Some of the energy is wasted in the distribution process.
 energy transfer.
\qquad
\qquad

$\mathbf{1}$	$\mathbf{0}$.	$\mathbf{2}$ The energy supplied each year to consumers is $1.2 \times 10^{18} \mathrm{~J}$

Calculate the efficiency of the distribution process.
\qquad
\qquad
\qquad
\qquad
Efficiency = \qquad

| $\mathbf{1}$ | $\mathbf{0}$. | $\mathbf{3}$ How is electrical power transmitted across the National Grid to make the process |
| :--- | :--- | :--- | as efficient as possible?

Tick one box.

At a high potential difference and a high current

At a high potential difference and a low current

At a low potential difference and a high current

At a low potential difference and a low current

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{4}$	Write the equation which links energy transferred, power and time.

\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{5}$ A wind turbine supplies a power output of 8000 kW for 1200 seconds. ${ }^{2}$. |
| :--- | :--- | :--- | :--- |

Calculate the energy transferred by the wind turbine in kJ
\qquad
\qquad
\qquad
\qquad
\qquad
Energy transferred = kJ

| $\mathbf{1}$ | $\mathbf{0} .6$ | Describe the environmental advantages and disadvantages of using wind turbines |
| :--- | :--- | :--- | to generate electricity in the UK.

\qquad
END OF QUESTIONS

