AQA

Please write clearly in block capitals. Centre number \square Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE

COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 3 Physical Sciences

Monday 1 June 2020
Afternoon
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$	This question is about elements.

Figure 1 shows the chemical symbols of five elements in the periodic table.

Figure 1

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

Tick (\checkmark) one box.
C

K

Mg

Na

Ne \square

| 0 | 1 | 2 |
| :--- | :--- | :--- | Which element forms fullerenes?

Tick (\checkmark) one box.
C

K

Mg \square
Na \square
Ne \square

| 0 | 1 | $\mathbf{3}$ Which two elements have atoms with the same number of electrons in their |
| :--- | :--- | :--- | :--- | outer shell?

Use Figure 1.

\qquad and \qquad

$\mathbf{0}$	$\mathbf{1}$.4	$\mathbf{4}$ Argon is very unreactive.

Figure 2 represents the electronic structure of an argon atom.

Figure 2

How does the electronic structure show that argon is unreactive?
\qquad
\qquad

Question 1 continues on the next page

Figure 3 shows some of the elements in Group 7 of the periodic table.

Figure 3

19
\mathbf{F}
fluorine
9
35.5
$\mathbf{C l}$
chlorine
17
80
$\mathbf{B r}$
bromine
35
127
\mathbf{I}
iodine
53

0	1	5

What is the formula of a chlorine gas molecule?
Tick (\checkmark) one box.
Cl
\square
Cl^{2}

Cl_{2}

2 Cl

0	1	$\mathbf{6}$	Which Group 7 element is the most reactive?

Tick (\checkmark) one box.

Bromine

Chlorine

Fluorine

Iodine

0	1	$\mathbf{7}$	Lithium atoms react with bromine atoms to produce lithium bromide.

Lithium bromide contains lithium ions and bromide ions.

Figure 4 shows the electronic structure of the atoms and ions.
The symbols (0) and (\mathbf{x}) represent electrons.
Only the outer shell electrons are shown.

Figure 4

Describe what happens when a lithium atom reacts with a bromine atom to produce a lithium ion and a bromide ion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	2	Figure 5 shows a car travelling at a constant speed on a straight, level road.

Figure 5

0	2	1
1		

| $\mathbf{0}$ | $\mathbf{2}$. |
| :--- | :--- | $\mathbf{2}$ The mass of the car is 850 kg

Calculate the weight of the car.
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
Weight = N

| $\mathbf{0}$ | $\mathbf{2} .3$ | $\mathbf{3}$ What is the direction of the normal contact force of the road on the wheels? |
| :--- | :--- | :--- | :--- |

[1 mark]
Tick (\checkmark) one box.

Down

Left

Right

Up

| $\mathbf{0}$ | $\mathbf{2} .4$ The car is travelling at constant speed. |
| :--- | :--- | :--- |

The resultant force on the car is zero.
How does the size of the normal contact force of the road on the wheels compare with the weight of the car?
[1 mark]
Tick (\checkmark) one box.

The normal contact force is equal to the weight of the car. \square
The normal contact force is greater than the weight of the car. \square
The normal contact force is less than the weight of the car. \square

Question 2 continues on the next page

A constant braking force of 5100 N is applied by the brakes.
The car decelerates and stops.
The braking distance is 38 m

Calculate the work done by the braking force.
Choose the unit from the box.

| joule metre | newton |
| :---: | :---: | :---: |

Use the equation:

$$
\text { work done }=\text { force } \times \text { distance }
$$

\qquad
\qquad
\qquad
Work done $=$ \qquad Unit \qquad

| 0 | 2 | 6 |
| :--- | :--- | :--- | Which two factors affect braking distance?

Tick (\checkmark) two boxes.

Condition of the tyres

Distractions

Drugs

Ice on the road

Using a mobile phone

Do not write
The distance a car travels during the driver's reaction time is called the thinking distance.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{7}$ Which factor affects thinking distance?

Tick (\checkmark) one box.

Condition of the brakes
\square

Weather conditions

0	2	8	Figure 6 shows a sketch graph of how thinking distance varies with speed.

Figure 6

Which term describes the relationship between thinking distance and speed?
Tick (\checkmark) one box.

Direct proportion

Inverse proportion

Negative correlation \square
There are no questions printed on this page

0	3	$F i g u r e$
7		

Figure 7

You should:

- draw one more magnetic field line
- show the direction of the magnetic field.

A student made an electromagnet from a metal nail and a coil of wire.

Figure 8 shows the electromagnet held in a clamp and connected to a circuit. When the switch was closed, the electromagnet attracted paper clips.

Figure 8

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ Which metal should be used for the nail?

Tick (\checkmark) one box.

Aluminium \square

Copper

Iron

Sodium

The student recorded how many paper clips the electromagnet could hold.

Table 1 shows the results.

Table 1

Number of turns of wire around the nail	Number of paper clips
20	5
40	10
60	\mathbf{X}
80	20

Predict value \mathbf{X} in Table 1.

$$
X=
$$

Question 3 continues on the next page

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{4}$	The student increased the resistance of the variable resistor.

What is the circuit symbol for a variable resistor?
Tick (\checkmark) one box.

| 0 | $\mathbf{3} .5$ | Complete the sentences. |
| :--- | :--- | :--- | :--- |

Choose answers from the box.
Each answer may be used once, more than once or not at all.

decreased	increased	stayed the same

When the resistance of the variable resistor was increased, the current in the electromagnet \qquad .

When the resistance of the variable resistor was increased, the number of paper clips the electromagnet could hold \qquad .

0	3	6	Figure 9 shows an electromagnet being used at a scrapyard.

Figure 9

Give two advantages of using an electromagnet to sort scrap metal compared with using a permanent magnet.
[2 marks]

1 \qquad
\qquad
2 \qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1} \mathrm{X}$ and Y represent atoms of different elements in an alkane.

Label element \mathbf{X} and element \mathbf{Y} on Figure 10.

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{2}$ What is represented by Z on Figure 10?

\qquad
-

Crude oil is separated into fractions in a fractionating column.

Figure 11 shows a fractionating column.

Figure 11

Table 2 gives some properties of different fractions separated from crude oil.

Table 2

Fraction	Range of number of carbon atoms in one molecule	Boiling point range in ${ }^{\circ} \mathrm{C}$
Heavy fuel oil	$\mathrm{C}_{20}-\mathrm{C}_{25}$	$300-400$
Diesel	$\mathrm{C}_{15}-\mathrm{C}_{20}$	$250-300$
Kerosene	$\mathrm{C}_{10}-\mathrm{C}_{15}$	$180-250$
Petrol	$\mathrm{C}_{5}-\mathrm{C}_{10}$	$40-180$

| 0 | 4 | .3 |
| :--- | :--- | :--- | are collected.

Use Table 2.

0	4.	4

Choose answers from the box.

condensation	cracking	distillation
evaporation	oxidation	polymerisation

Crude oil is separated by fractional \qquad .

The process happening at \mathbf{A} in Figure 11 is \qquad .

The process happening at \mathbf{B} in Figure 11 is \qquad .

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{5}$ Which statement about the flammability of petrol and diesel is correct? |
| :--- | :--- | :--- | :--- |

Use Table 2.

Tick (\checkmark) one box.

Petrol and diesel have the same flammability.

Petrol is less flammable than diesel.

Petrol is more flammable than diesel.
\square
\square

Table 2 is repeated here

Table 2

Fraction	Range of number of carbon atoms in one molecule	Boiling point range in ${ }^{\circ} \mathrm{C}$
Heavy fuel oil	$\mathrm{C}_{20}-\mathrm{C}_{25}$	$300-400$
Diesel	$\mathrm{C}_{15}-\mathrm{C}_{20}$	$250-300$
Kerosene	$\mathrm{C}_{10}-\mathrm{C}_{15}$	$180-250$
Petrol	$\mathrm{C}_{5}-\mathrm{C}_{10}$	$40-180$

Octane is a hydrocarbon obtained from crude oil.
Octane has 8 carbon atoms.

| 0 | 4 | 6 |
| :--- | :--- | :--- | Which fraction in Table 2 contains octane?

Tick (\checkmark) one box.

Diesel

Heavy fuel oil \square

Kerosene

Petrol

0	4	$\mathbf{7}$	Name the two substances produced from the complete combustion of octane.

1

2
\qquad

$\mathbf{0}$	$\mathbf{5}$	One use of carbon dioxide is in fizzy drinks.

In fizzy drinks carbon dioxide gas dissolves in water to form an aqueous solution of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$.

0	5	1	The equation for the reaction is:

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}\left(_\quad\right)
$$

Complete the equation by writing the state symbol for carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$.
Choose the answer from the box.

aq	\mathbf{g}	\mathbf{l}	\mathbf{s}

| 0 | 5 | 2 |
| :--- | :--- | :--- | Which ion causes carbonic acid to be acidic?

Tick (\checkmark) one box.
$\mathrm{CO}_{3}{ }^{2-} \square$
H^{+}

$\mathrm{O}^{2-} \square$

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{3}$ Describe how to test the pH of carbonic acid.

Give the result of the test.

Test \qquad
\qquad
Result \qquad
\qquad

Ammonia gas is produced from nitrogen gas and hydrogen gas in a reversible reaction.

The word equation is:

$$
\text { nitrogen }+ \text { hydrogen } \rightleftharpoons \text { ammonia }
$$

0	5	4	Figure 12 represents an ammonia molecule.

Figure 12

What is the formula of ammonia?
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ When does a reversible reaction reach dynamic equilibrium? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

When the forward reaction and the reverse reaction happen at the same rate. \square
When the forward reaction is faster than the reverse reaction.

When the reverse reaction is faster than the forward reaction.
\square

| 0 | 5 | 6 | Which condition is needed for the reversible reaction between nitrogen and hydrogen |
| :--- | :--- | :--- | :--- | to be at dynamic equilibrium?

Tick (\checkmark) one box.

All gases can escape \square

Ammonia can escape

No gases can escape

0	5	$\mathbf{7}$ How can the direction of a reversible reaction be changed?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	8	Iron is used as a catalyst in the industrial production of ammonia.

Why is a catalyst used?
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5} .9$	$\mathbf{9}$

85% of the ammonia produced each year is used to manufacture fertilisers.

Calculate the mass of ammonia used each year to manufacture fertilisers.
\qquad
\qquad
\qquad
\qquad

| 0 | 6 |
| :--- | :--- | A student investigated the effect of pH on the rate of starch digestion.

This is the method used.

1. Add $2 \mathrm{~cm}^{3}$ of amylase solution at pH 5.0 to a test tube.
2. Add $2 \mathrm{~cm}^{3}$ of starch solution to the same test tube.
3. Start the timer.
4. Remove one drop of the amylase-starch mixture after 30 seconds.
5. Test the drop for starch.
6. Remove a drop of the amylase-starch mixture every 30 seconds until no starch is detected.
7. Record the total time taken for no starch to be detected.
8. Repeat steps $\mathbf{1}$ to $\mathbf{7}$ using amylase solution at different pHs .

The student kept all the solutions in a water bath at $37^{\circ} \mathrm{C}$

| 0 | 6 | 1 |
| :--- | :--- | :--- | What is the independent variable in the investigation?

Tick (\checkmark) one box.
pH of amylase solution \square

Temperature of water bath \square

Volume of starch solution \square

0	6	2

Give the result of the test if starch is present.

Test \qquad
\qquad
Result \qquad

Question 6 continues on the next page

Table 3 shows the results.

Table 3

$\mathbf{p H}$	Time for no starch to be detected in seconds
5.0	420
5.5	330
6.0	270
6.5	240
7.0	120
7.5	90
8.0	120
8.5	180
9.0	270

| 0 | 6 | 3 |
| :--- | :--- | :--- | What is the pH range the student used?

Use Table 3.

pH range from \qquad to \qquad

| 0 | 6 | 4 |
| :--- | :--- | :--- | At the optimum pH the enzyme works fastest.

What is the optimum pH for amylase enzyme?
Use Table 3.

Optimum pH = \qquad

Tick (\checkmark) one box.

Remove one drop of the amylase-starch mixture every minute. \square

Use a less concentrated amylase solution.

Use smaller pH intervals.

| 0 | 6 | 6 |
| :--- | :--- | :--- | What is the best way for the student to display the results?

Tick (\checkmark) one box.

Bar chart

Frequency table

Line graph

Pie chart

Turn over for the next question

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

$\mathbf{0}$	$\mathbf{7} \quad$ Some street lights automatically switch on when it gets dark.

Figure 13 shows a street light.

The electrical circuit for the street light includes a light-dependent resistor (LDR).

Figure 13

$\begin{array}{llll}\mathbf{0} & \mathbf{7} . & \mathbf{1} \text { The power supply for the street light uses alternating current. }\end{array}$
What is alternating current?

Tick (\checkmark) one box.

Current that continually changes direction. \square

Current that increases and decreases and is in one direction only. \square

Current that is constant and is in one direction only. \square

Figure 14 shows how the resistance of the LDR varies with light intensity.
Light intensity is measured in lux

Figure 14

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{2}$ How does light intensity affect the resistance of the LDR?

\qquad
\qquad
$\begin{array}{lllll}0 & 7 & 3 & \text { Write down the equation which links current }(I) \text {, potential difference }(V) \text { and }\end{array}$ resistance (R).
\qquad

Resistance $=$ Ω

0	$\mathbf{7}$.	$\mathbf{5}$

Use your answer to Question 07.4 and Figure 14.

Light intensity = lux

0	$\mathbf{7}$	6

What is the most likely cause of this problem?
[1 mark]
Tick (\checkmark) one box.

The LDR is covered by dirt.

The lamp in the street light is broken.

The temperature is decreasing.

Question 7 continues on the next page

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{7}$ This street light is replaced with one which is more efficient.

What does more efficient mean?
Tick (\checkmark) one box.

Larger proportion of useful energy output

Larger proportion of wasted energy output
\square
\square

Larger total energy input per second \square

| $\mathbf{0}$ | $\mathbf{8}$ | A student investigated how the power output of a filament lamp varied with the current |
| :--- | :--- | :--- | in the lamp.

Figure 15 shows part of the circuit the student used.

Figure 15

| 0 | 8 |
| :--- | :--- | $\mathbf{1}$ To calculate power output the student measured the current in the lamp and the potential difference across the lamp.

Complete Figure 15 by adding an ammeter and a voltmeter to make the measurements.

Use the correct circuit symbols.
$\begin{array}{llll}0 & \mathbf{8} .2\end{array}$ Which energy store in the battery decreases when the lamp is switched on?
\qquad

| 0 | 8 | 3 |
| :--- | :--- | :--- | What happens to the energy transferred by the lamp?

\qquad
\qquad
Question 8 continues on the next page

Figure 16 shows the results.

Figure 16

$\begin{array}{lllll}0 & 8 & 4 & \text { Describe how varying the current affects the power output of the filament lamp. }\end{array}$
\qquad
\qquad
\qquad
\qquad

\qquad

| $\mathbf{0}$ | $\mathbf{8} .6$ | Determine the resistance of the lamp when the current in the lamp is 0.22 A |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Resistance = Ω

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{9} \quad$ A student investigated the temperature increase when magnesium powder was added |
| :--- | :--- | :--- | to copper sulfate solution.

Figure 17 shows the apparatus used.

Figure 17

This is the method used.

1. Add copper sulfate solution to a beaker.
2. Measure the initial temperature of the copper sulfate solution.

3 . Add 0.1 g of magnesium powder.
4. Stir the mixture.
5. Measure the maximum temperature of the mixture.
6. Repeat steps $\mathbf{1}$ to $\mathbf{5}$ with different masses of magnesium powder.

| $\mathbf{0}$ | $\mathbf{9} \cdot \mathrm{A}$ | Give two control variables the student should use. | [2 marks] |
| :--- | :--- | :--- | :--- | :--- |

1

2
\qquad
\qquad

Question 9 continues on the next page

0	9	3	Table 4 shows the student's results.

Table 4

Mass of magnesium in \mathbf{g}	Temperature increase in ${ }^{\circ} \mathrm{C}$
0.1	3
0.2	6
0.3	9
0.4	12
0.5	15
0.6	18
0.7	21
0.8	21
0.9	24
1.0	21

Explain the conclusions that can be made from the trends shown in the results.
Use data from Table 4 in your answer.
\qquad

Turn over for the next question

| $\mathbf{1}$ | $\mathbf{0}$ This question is about iron and steel. |
| :--- | :--- | :--- |

Figure 18 shows a flow chart for the production of iron and steel from iron ore. Iron ore consists mainly of iron oxide.

Figure 18

$\mathbf{1}$	$\mathbf{0}$.	$\mathbf{1}$
In the blast furnace iron oxide reacts with carbon monoxide to form iron and		

Complete the equation for the reaction between iron oxide and carbon monoxide.
You should balance the equation.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \longrightarrow \quad+
$$

1	$\mathbf{0} .2$	2

What does 'reduced' mean in this reaction?
\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{3}$ Cast iron is an alloy. |
| :--- | :--- | :--- | :--- |

Cast iron contains carbon.

Figure 19 shows the arrangement of atoms in pure iron and in cast iron.

Figure 19

Explain why cast iron is harder than pure iron.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10 continues on the next page

| 1 | $\mathbf{0}$ | .4 |
| :--- | :--- | :--- | In addition to cast iron, scrap steel is added to the steel-making furnace.

Give three environmental advantages of recycling scrap steel in this way.

1
\qquad
2 \qquad
\qquad
3 \qquad

END OF QUESTIONS

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

