AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname \qquad
Forename(s) \qquad
Candidate signature \qquad

GCSE

COMBINED SCIENCE: SYNERGY

Higher Tier Paper 3 Physical sciences

Monday 11 June 2018
Morning
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100 .

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| $\mathbf{0}$ | $\mathbf{1} \quad$ This question is about hydrogen chloride. |
| :--- | :--- | :--- |

Complete Figure 1 to show a dot and cross diagram for a hydrogen chloride molecule.

Show the outer electrons only.

Figure 1

Hydrogen gas $\left(\mathrm{H}_{2}\right)$ reacts with chlorine gas to produce hydrogen chloride.

| $\mathbf{0}$ | $\mathbf{1} .2$ | Complete the balanced chemical equation for the reaction between hydrogen |
| :--- | :--- | :--- | and chlorine.

$$
\mathrm{H}_{2}+
$$

\qquad \longrightarrow \qquad

Figure 2 shows the reaction profile diagram for the reaction between hydrogen and chlorine.

Figure 2

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{3}$ What do \mathbf{A} and \mathbf{B} represent on Figure 2?

A
B \qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{4}$ How does the reaction profile diagram show that the reaction is exothermic?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$ Hydrogen chloride gas dissolves in water to form hydrochloric acid. l . t

Hydrochloric acid contains hydrogen ions and chloride ions.
Explain why hydrogen chloride gas does not conduct electricity but hydrochloric acid is able to conduct electricity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{2}$ When a metal carbonate reacts with an acid, a salt, carbon dioxide and water |
| :--- | :--- | are produced.

$\mathbf{0}$	$\mathbf{2} .1$	Describe how you would test for carbon dioxide gas.

Give the result of the test.

Test \qquad
\qquad
Result \qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ Describe how to make pure dry crystals of magnesium chloride from |
| :--- | :--- | :--- | magnesium carbonate and a dilute acid.

In your method you should name the apparatus and reagents you plan to use.
[6 marks]
\qquad

| $\mathbf{0}$ | $\mathbf{3} \quad$ An energy input of $1.3 \times 10^{18} \mathrm{~J}$ is supplied each year by power stations to the |
| :--- | :--- | :--- | National Grid.

Not all of this energy is supplied to consumers. Some of the energy is wasted in the distribution process.

| $\mathbf{0}$ | $\mathbf{3} .1$ | $\mathbf{1}$ Write the equation which links efficiency, total input energy transfer and useful output |
| :--- | :--- | :--- | energy transfer.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3} .2$ |
| :--- | :--- | :--- | The energy supplied each year to consumers is $1.2 \times 10^{18} \mathrm{~J}$

Calculate the efficiency of the distribution process.
\qquad
\qquad
\qquad
\qquad
Efficiency = \qquad

0	3	3
3	$H o w ~ i s ~ e l e c t r i c a l ~ p o w e r ~ t r a n s m i t t e d ~ a c r o s s ~ t h e ~ N a t i o n a l ~ G r i d ~ t o ~ m a k e ~ t h e ~ p r o c e s s ~$	

Tick one box.

At a high potential difference and a high current

At a high potential difference and a low current

At a low potential difference and a high current

At a low potential difference and a low current

$\mathbf{0}$	$\mathbf{3} .4$	Write the equation which links energy transferred, power and time.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3} .5$ | A wind turbine supplies a power output of 8000 kW for 1200 seconds. |
| :--- | :--- | :--- | :--- |

Calculate the energy transferred by the wind turbine in kJ
\qquad
\qquad
\qquad
\qquad
\qquad
Energy transferred =

| 0 | $\mathbf{3} .6$ | Describe the environmental advantages and disadvantages of using wind turbines |
| :--- | :--- | :--- | to generate electricity in the UK.

\qquad

0	4

0	4.	1

Figure 3

0	4	2
2	Describe a method using a compass to plot the magnetic field lines around a	

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

0	4	4	Iron is a magnetic element.

Which of the following is also a magnetic element?
Tick one box.

Cobalt

Copper

Steel

Zinc

Question 4 continues on the next page
 [2 marks]

1
\qquad
2
\qquad

\qquad
\qquad
\qquad
\qquad
Turn over for the next question

0	$\mathbf{5}$	A teacher demonstrated the extraction of copper from copper oxide.

This is the method used.

1. Mix 1.30 g of zinc and 1.59 g of copper oxide.
2. Heat the mixture strongly.
3. When the mixture starts to glow, stop heating.
4. Let the glow spread through the mixture.
5. Leave the mixture to cool.
6. Add hydrochloric acid to the cooled mixture.
7. Filter the mixture obtained in step 6.

| 0 | 5 | .1 |
| :--- | :--- | :--- | A student concluded that an exothermic reaction had taken place.

Explain how an observation made during the demonstration shows this.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5} .2$	$\mathbf{2}$ The equation for the reaction between zinc and copper oxide is:

$$
\mathrm{Zn}+\mathrm{CuO} \rightarrow \mathrm{ZnO}+\mathrm{Cu}
$$

1.59 g of copper oxide reacted.

Calculate the mass of copper produced.
Relative atomic masses $\left(A_{r}\right): \quad \mathrm{Cu}=63.5 \quad \mathrm{O}=16 \quad \mathrm{Zn}=65$
\qquad
\qquad
\qquad
\qquad
Mass of copper produced = \qquad g

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{3}$ Explain why steps 6 and 7 result in only copper being obtained as the residue. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | 4 |
| :--- | :--- | :--- | The ionic equation for the reaction is:

$$
\mathrm{Zn}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}
$$

Which statement about the reaction between zinc and copper ions is correct?
Tick one box.

Copper ions have been oxidised because the copper ions have gained electrons.

Copper ions have been oxidised because the copper ions have lost electrons.

Zinc has been oxidised because the zinc atoms have gained electrons.

Zinc has been oxidised because the zinc atoms have lost electrons.

Turn over for the next question

| 0 | 6 |
| :--- | :--- | Copper can be extracted using biological methods.

0	6.1	Name two biological methods used to extract copper from copper ores.

For each method, name the type of organism used in the process.

Method 1
Type of organism \qquad
Method 2
Type of organism \qquad

1
\qquad

2
\qquad
3 \qquad
\qquad

The biological methods produce copper compounds such as copper sulfate.

| $\mathbf{0}$ | $\mathbf{6} .3$ | Copper can be extracted from copper sulfate solution by adding scrap iron. |
| :--- | :--- | :--- | :--- | Explain why.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{6} .4$ Complete the chemical equation for the reaction between iron and |
| :--- | :--- | :--- | copper sulfate solution.

Include state symbols.
\qquad $\left(_\right)+\mathrm{CuSO}_{4}\left(_\right)$ \qquad $\left(_\right)+$ \qquad

$\mathbf{0}$	$\mathbf{6} .5$	$\mathbf{5}$ A solution of copper sulfate contains 3.175 g of copper ions.

Calculate the number of copper ions in the solution.
Give your answer in standard form.
Relative atomic mass $\left(A_{r}\right): \quad \mathrm{Cu}=63.5$
The Avogadro constant is 6.02×10^{23} per mole.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Number of copper ions $=$ \qquad

| 0 | 7 | A teacher demonstrated the temperature change when hydrochloric acid is added to |
| :--- | :--- | :--- | sodium hydroxide solution.

This is the method used.

1. Measure $25 \mathrm{~cm}^{3}$ of sodium hydroxide solution using a measuring cylinder.
2. Add the sodium hydroxide solution to a polystyrene cup.
3. Record the temperature of the sodium hydroxide solution.
4. Add $5 \mathrm{~cm}^{3}$ of hydrochloric acid from a burette to the sodium hydroxide solution.
5. Stir the solution.
6. Record the temperature of the solution.
7. Repeat steps $4-6$ until $50 \mathrm{~cm}^{3}$ of hydrochloric acid in total is added.

Table 1 shows some of the teacher's results.
Table 1

Volume of hydrochloric acid added in $\mathbf{~ m}^{3}$	Temperature in ${ }^{\circ} \mathbf{C}$
0	21.30
5	24.25
10	26.15
15	27.05
20	27.70

| 0 | 7. | Figure 4 shows the results when $30 \mathrm{~cm}^{3}$ to $50 \mathrm{~cm}^{3}$ of hydrochloric acid was added to |
| :--- | :--- | :--- | sodium hydroxide solution.

A line of best fit has been drawn through these results.

Complete Figure 4.
You should:

- plot the data from Table 1 on Figure 4
- draw a line of best fit through these results
- continue both lines of best fit until the lines meet.

Figure 4

0	$\mathbf{7} .2$	$\mathbf{2}$ Estimate the maximum temperature reached in the reaction.

Use Figure 4.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ | The teacher used a temperature sensor to measure the temperature of the |
| :--- | :--- | :--- | :--- | reaction mixture.

What is the resolution of the temperature sensor?
$1 \times 10^{-1}{ }^{\circ} \mathrm{C}$

$1 \times 10^{-2}{ }^{\circ} \mathrm{C}$

$1 \times 10^{-3}{ }^{\circ} \mathrm{C}$

$1 \times 10^{-4}{ }^{\circ} \mathrm{C}$

0	$\mathbf{7}$	$\mathbf{4}$ Suggest two ways of improving the accuracy of the results.

1
\qquad
2 \qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{5}$ The pH of the solution changes as hydrochloric acid is gradually added to |
| :--- | :--- | :--- | sodium hydroxide solution, until hydrochloric acid is in excess.

Describe how the pH of the solution changes.
Give reasons for these changes.
You should refer to the pH value of the solution at different stages in the procedure.
\qquad

| 0 | $\mathbf{7} .6$ | In a different demonstration the teacher used a $25 \mathrm{~cm}^{3}$ solution containing |
| :--- | :--- | :--- | 1.4 g of sodium hydroxide.

Calculate the concentration of the sodium hydroxide solution in $\mathrm{g} / \mathrm{dm}^{3}$
\qquad
\qquad
\qquad
\qquad
Concentration of sodium hydroxide solution $=$ \qquad $\mathrm{g} / \mathrm{dm}^{3}$

路

0	8	An athlete takes part in a race on a straight, horizontal running track.

Figure 5 shows the velocity-time graph for the athlete during the race.

Figure 5

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ What is the main force that opposes the athlete's forward motion?

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8} .2$ | $\mathbf{2}$ Which section of the graph represents a part of the race where the resultant force |
| :--- | :--- | :--- | on the athlete is zero?

Tick one box.

D-E
\square

| 0 | 8 | 3 |
| :--- | :--- | :--- | :--- | The athlete has a mass of 94.8 kg

Calculate the momentum of the athlete at a time of 6.0 s
Use Figure 5.
\qquad
\qquad
\qquad
\qquad
Momentum = \qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$

Determine the acceleration at a time of 12.0 s
Use Figure 5.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad Unit \qquad

Figure 6 is a copy of Figure 5 to help you answer the following questions.

Figure 6

A second athlete starts the race at the same time as the first athlete.
The second athlete moves with a constant acceleration of $1.6 \mathrm{~m} / \mathrm{s}^{2}$ for the first 6.0 seconds of the race.

The first athlete travels further than the second athlete during the first 6.0 seconds.

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{5}$ Draw a line on Figure 6 to represent the motion of the second athlete for the |
| :--- | :--- | :--- | :--- | first 6.0 seconds of the race.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8} .6$ | Determine the extra distance travelled by the first athlete over the first 6.0 seconds |
| :--- | :--- | :--- | of the race.

Use Figure 6.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Extra distance travelled by first athlete $=$ \qquad m
There are no questions printed on this page
DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
Copyright © 2018 AQA and its licensors. All rights reserved.

