AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

GCSE

COMBINED SCIENCE: SYNERGY

Foundation Tier Paper 4 Physical Sciences

Wednesday 10 June $2020 \quad$ Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
\qquad

$\mathbf{0}$	$\mathbf{1}$	A student investigated the electrolysis of potassium chloride solution.

Figure 1 shows the apparatus used.

Figure 1

$\begin{array}{lll}\mathbf{0} & \mathbf{1} & \mathbf{1} \text { The student used the piece of equipment labelled } \mathbf{A} \text { to measure the volume of }\end{array}$ gas collected.

What is the piece of equipment labelled \mathbf{A} ?
Tick (\checkmark) one box.

Balance

Conical flask \square
Measuring cylinder

Thermometer

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ What does the circuit symbol \mathbf{B} represent?

\qquad

| 0 | 1 |
| :--- | :--- | $\mathbf{3}$ Complete the sentence.

Choose the answer from the box.

anode	cathode	electrolyte	product

In this process potassium chloride solution is the \qquad .

0	1	.4

What is direct current?
Tick (\checkmark) one box.

Current that always passes in the same direction.

Current that changes direction 100 times each second.

Current that does not have a direction.

0	1	5	Potassium chloride solution contains potassium $\left(\mathrm{K}^{+}\right)$ions and chloride $\left(\mathrm{Cl}^{-}\right)$ions.

Why are chloride ions attracted to the positive electrode?
\qquad
\qquad

Question 1 continues on the next page

0	1	6

Which test should the student use to identify hydrogen gas?
Tick (\checkmark) one box.

A burning splint \square
A glowing splint

Bubble through limewater

Damp litmus paper

$\mathbf{0}$	$\mathbf{1}$.7	Hydrogen ions and potassium ions move to the negative electrode.

Hydrogen gas is produced at the negative electrode.

Why is hydrogen gas produced at the negative electrode?
Tick (\checkmark) one box.

Hydrogen is a non-metal.

Hydrogen is less reactive than potassium. \square
Too few potassium ions move to the electrode.

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{8}$ The student measured the volume of gas collected at each electrode every minute |
| :--- | :--- | :--- | for 25 minutes.

Figure 2 shows the results.

Figure 2

Describe one similarity and one difference in the volume of hydrogen and the volume of chlorine collected during the 25 minutes.

Use Figure 2.

```
[2 marks]
```

Similarity
\qquad
Difference \qquad

02

Figure 3 shows how a power station supplies electricity to consumers.

Figure 3

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ The National Grid is a system of cables and transformers linking power stations |
| :--- | :--- | :--- | to consumers.

Complete the sentences.
Choose answers from the box.
Each answer may be used once, more than once or not at all.

decrease	increase	remain the same

The step-up transformer causes the potential difference to increase and the current to \qquad .

The use of the step-up transformer causes the energy transferred by heating of the cables to \qquad .

The step-down transformer causes the potential difference to decrease and the current to \qquad .

$\mathbf{0}$	$\mathbf{2} .2$	A nuclear power station has a power output of 350000000 W

Calculate the energy transferred by the power station in 60 seconds.
Use the equation:

$$
\text { energy transferred }=\text { power } \times \text { time }
$$

Table 1 shows some of the waste products produced by three different types of power station.

Table 1

Type of power station	Carbon dioxide produced in $\mathbf{k g} / \mathbf{M J}$	Other waste products
Coal	0.08	sulfur dioxide
Geothermal	0.03	none
Nuclear	0.00	radioactive waste

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{3}$ Which type of power station contributes least to global warming?

Give a reason for your answer.

Power station \qquad
Reason \qquad
\qquad

| 0 | 2 | 4 |
| :--- | :--- | :--- | Which type of power station produces waste products that cause acid rain?

Give a reason for your answer.

Power station \qquad
Reason \qquad

$\mathbf{0}$	$\mathbf{3}$ A student investigated how the bounce height of a ball varied with drop height.

Figure 4 shows the ball before and after bouncing.

Figure 4

Before the ball was dropped

Floor

Maximum height after bouncing

Question 3 continues on the next page

Figure 5 shows some of the student's results.

Figure 5

0	3	1
1	Describe a method the student could use to obtain the data shown in Figure 5.	

Mean bounce height in centimetres
\qquad

0	3	2

Give one reason why you chose this result.

0	3	3	Table 2 shows some of the student's results.

Table 2

Drop height in centimetres	Mean bounce height in centimetres
70	35
80	40

Plot the data in Table 2 on Figure 5.
Draw a line of best fit.

| 0 | 3 | 4 |
| :--- | :--- | :--- | What conclusion can be made from Figure 5?

Tick (\checkmark) one box.

As drop height increases, the mean bounce height decreases. \square
Mean bounce height is always higher than drop height. \square

Drop height and mean bounce height show a linear relationship.

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{5}$ Table $\mathbf{3}$ shows some of the student's results. |
| :--- | :--- | :--- | :--- |

Table 3

Drop height in centimetres	Bounce height in centimetres			
	Test 1	Test 2	Test 3	Mean
60	31	30	29	30

What was the uncertainty in the student's results when the drop height was 60 cm ?

Tick (\checkmark) one box.

Uncertainty $= \pm 1 \mathrm{~cm}$

Uncertainty $= \pm 2 \mathrm{~cm}$

Uncertainty $= \pm 4 \mathrm{~cm}$ \square

| 0 | 3 | 6 |
| :--- | :--- | :--- | What is the reason for the uncertainty in the values of bounce height?

Tick (\checkmark) one box.

It is difficult to judge when the ball is at maximum height.

The bounce height is too small to measure.

When the ball bounces, energy is transferred to the surroundings. \square
Tick (\checkmark) one box [1 mark]
(V)
\square

| 0 | 4 | A student investigated how the distance travelled by a trolley from the end of a ramp |
| :--- | :--- | :--- | varied with the total mass of the trolley.

Figure 6 shows the equipment the student used.

Figure 6

This is the method used.

1. Put the trolley on the ramp at the start position.
2. Let the trolley roll down the ramp.
3. Measure the distance from the end of the ramp to the position where the trolley stops.
4. Repeat steps $\mathbf{1}$ to $\mathbf{3}$ with different masses on the trolley.

\qquad

Table 4 shows the results.

Table 4

Total mass of trolley and masses in kilograms	Distance travelled by trolley until it stopped in metres
0.50	1.60
1.00	3.50
1.50	\mathbf{X}
2.00	6.40

0	4	2

$X=$
$\begin{array}{lll}\mathbf{0} & \mathbf{4} \text {. } 3 \text { What conclusion can be made from these results? }\end{array}$
\qquad
\qquad
\qquad
\qquad

| 0 | 4 | 4 |
| :--- | :--- | :--- | mass of the trolley and the floor was 0.600 m

gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the gravitational potential energy of the trolley when the total mass of the trolley and masses was 2.50 kg

Use the equation:
gravitational potential energy $=$ mass \times gravitational field strength \times height
\qquad
\qquad
\qquad
\qquad
Gravitational potential energy =
\qquad J

| 0 | 4 | 5 | When the trolley is released from the start position, energy is transferred in |
| :--- | :--- | :--- | :--- | different ways.

Complete the sentences.
Choose answers from the box.

chemical elastic potential gravitational potential

kinetic thermal

As the trolley moves down the ramp the trolley accelerates.
There is a decrease in the trolley's \qquad energy.

There is an increase in the trolley's \qquad energy.

After leaving the ramp the trolley slows down.
There is an increase in the \qquad energy of
There is an increase in the troley's
the surroundings.

$\mathbf{0}$	$\mathbf{5}$ This question is about hydrogen peroxide.

The formula of hydrogen peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$

| 0 | 5 | 1 |
| :--- | :--- | :--- | Name the elements in a molecule of hydrogen peroxide.

\qquad and \qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{2}$ How many atoms are in a molecule of hydrogen peroxide? |
| :--- | :--- | :--- | :--- |

0	5	3

Write the word equation for the reaction.
\qquad \rightarrow \qquad $+$ \qquad

A student investigated the decomposition of hydrogen peroxide.
The student used manganese dioxide as a catalyst.
The student measured the volume of oxygen produced.
$\begin{array}{lll}0 & 5 & 4\end{array}$ The student collected the oxygen in a gas syringe.

Figure 7 shows a gas syringe.

Figure 7

What is the volume of oxygen in the syringe?
\qquad cm^{3}

Question 5 continues on the next page

Figure 8 shows how the volume of oxygen collected varied with time.

Figure 8

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{5}$ Which point on Figure 8 shows when the reaction is fastest?

Tick (\checkmark) one box.
A

B

C

D \square

| 0 | 5 | 6 |
| :--- | :--- | :--- | Which point on Figure 8 shows when the reaction has stopped?

Tick (\checkmark) one box.
A

B \square
C

D \square

| $\mathbf{0}$ | $\mathbf{5} .7$ | The student repeated the investigation using raw potato instead of |
| :--- | :--- | :--- | :--- | manganese dioxide.

An enzyme in the potato acts as the catalyst.
Draw one line from each catalyst to the type of substance the catalyst is.

Catalyst

Type of substance

Protein molecule

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{8}$	The student repeated the investigation using boiled potato instead of raw potato.

The enzyme in the boiled potato did not catalyse the reaction.

How will the rate of decomposition of hydrogen peroxide using boiled potato compare with the rate using raw potato?

Tick (\checkmark) one box.

The hydrogen peroxide will decompose at a faster rate.

The hydrogen peroxide will decompose at a slower rate.

The hydrogen peroxide will decompose at the same rate. \square

0	6

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{1}$ The word equation for the reaction of zinc with sulfuric acid is:

$$
\text { zinc }+ \text { sulfuric acid } \rightarrow \text { zinc sulfate }+ \text { hydrogen }
$$

What type of substance is zinc sulfate?
Tick (\checkmark) one box.

Acid

Alkali

Base

Salt

Relative atomic masses $\left(A_{r}\right): \quad \mathrm{Zn}=65 \quad \mathrm{~S}=32 \quad \mathrm{O}=16$
\qquad
\qquad
\qquad
Relative formula mass $\left(M_{\mathrm{r}}\right)=$ \qquad

A student investigated the temperature increase when the same mass of different metals were added to 0.1 M sulphuric acid.

The student used four different metals.
The student did the experiment three times for each metal and calculated the mean temperature increase for each metal.

0	6	3

Table 5

Temperature increase in $^{\circ} \mathrm{C}$			
Test 1	Test 2	Test 3	Mean
3.5	\mathbf{X}	3.5	4.0

Calculate value \mathbf{X}.
\qquad
\qquad
\qquad
\qquad
X =

Question 6 continues on the next page

Table 6 shows the mean values for the four metals.

Table 6

Metal	Mean temperature increase in ${ }^{\circ} \mathrm{C}$
Iron	6.5
Magnesium	18.0
Nickel	4.0
Zinc	9.5

The student plotted the results on a bar chart.

Figure 9 shows the bar chart.

Figure 9

$\mathbf{0}$	$\mathbf{6} .4$	The student made some errors when plotting the bar chart.

Give three errors the student made.
[3 marks]
1
\qquad
2 \qquad
\qquad
3 \qquad
\qquad

| 0 | 6 | 5 |
| :--- | :--- | :--- | Use Table 6 to place the metals in order of reactivity.

Most reactive \qquad
\qquad
\qquad

Figure 10 shows a girl inside a train which is moving to the left at a speed of $20 \mathrm{~m} / \mathrm{s}$ The girl is wearing inline skates.

Figure 10

$\mathbf{0}$	$\mathbf{7} .1$	The train is moving at a constant speed of $20 \mathrm{~m} / \mathrm{s}$

The train suddenly decelerates.
The girl continues to move with a speed of $20 \mathrm{~m} / \mathrm{s}$
Which of Newton's laws is a correct explanation of this situation?
Tick (\checkmark) one box.

Newton's First Law

Newton's Gravitational Law

Newton's Third Law \square

Figure 11 shows a velocity-time graph for the train as it arrives at a station and stops.

Figure 11

$\begin{array}{lllll}0 & 7 & 2 & \text { Between which two times on Figure } 11 \text { is the train stationary? }\end{array}$
Tick (\checkmark) one box.

Between 0 and 5 seconds

Between 10 and 15 seconds \square
Between 20 and 25 seconds \square

Determine the distance the train travels between 0 seconds and 5 seconds.
Use the equation:

$$
\text { distance travelled }=\text { speed } \times \text { time }
$$

Distance = \qquad m

0	7	4	Between which two times on Figure 11 is the deceleration of the train the greatest?

Between \qquad seconds and \qquad seconds.

| 0 | 7 | 5 |
| :--- | :--- | :--- | Write down the equation which links acceleration (a), change in velocity (Δv) and time taken (t).

\qquad

0	$\mathbf{7} .6$	Determine the acceleration of the train between 15 seconds and 20 seconds.

[2 marks]
\qquad
\qquad
\qquad
Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

Question 7 continues on the next page

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{7}$ Write down the equation which links kinetic energy $\left(E_{k}\right)$, mass (m) and speed (v).....$~$

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{8}$ |
| :--- | :--- | :--- | At one point in the train's journey the train's speed was $6.0 \mathrm{~m} / \mathrm{s}$

At this point the kinetic energy of the train was 1080000 J

Calculate the mass of the train.
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = kg

| $\mathbf{0}$ | $\mathbf{8} \quad$ This question is about polymers and plastics. |
| :--- | :--- | :--- |

Figure 12 shows the displayed formula for poly(chloroethene).

Figure 12

0	8	1	What does ' n ' represent in the displayed formula for poly(chloroethene)?

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8} .2$ The representation of poly(chloroethene) in Figure 12 does not show the actual |
| :--- | :--- | :--- | structure of the molecule.

Give one reason why.
\qquad
\qquad

Poly(chloroethene) is commonly known as PVC.
PVC does not decompose in the ground.

Many polymer plastics like PVC become pollutant waste in the oceans.
In the oceans, PVC can break into smaller pieces.
The smaller pieces are called PVC nanoplastic.

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3}$	A piece of PVC nanoplastic has a thickness of 50 nm

Calculate the thickness of the PVC nanoplastic in metres.
Give your answer in standard form.
$1 \mathrm{~nm}=0.000000001 \mathrm{~m}$
\qquad
\qquad
\qquad
Thickness $($ in standard form $)=$ m

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{4}$ Suggest two reasons why PVC nanoplastic can be harmful to marine life. |
| :--- | :--- | :--- | :--- |

1
\qquad
2 \qquad
\qquad

0	8	5	Suggest two ways to reduce plastic waste.

1
\qquad
2 \qquad
\qquad
[2 marks]

| 0 | $\mathbf{9}$ | A student wanted to make blue copper sulfate crystals from green copper carbonate |
| :--- | :--- | :--- | powder and sulfuric acid.

Figure 13 shows the method the student used

Figure 13

The student obtained a mixture of coloured powders not blue crystals.
Describe how the method could be improved so that blue copper sulfate crystals are produced.
\qquad

Turn over for the next question

| $\mathbf{1}$ | $\mathbf{0}$ A student investigated how the extension of a spring varied with the force acting on |
| :--- | :--- | the spring.

Figure 14 shows the equipment the student used and a ruler scale between 10 cm and 15 cm

Figure 14

1	0	1
1	Describe how the student should determine the extension of the spring.	

\qquad
\qquad
\qquad
\qquad

| 1 | $\mathbf{0}$. | $\mathbf{3}$ The extension of the spring was 0.12 m when the force was 3.0 N |
| :--- | :--- | :--- | Calculate the spring constant of the spring.

\qquad
\qquad
\qquad
\qquad
\qquad
Spring constant $=$ N / m

Question 10 continues on the next page

1	0	4	Figure 15 shows the results of the same investigation using a different spring.

Figure 15

The spring constant of the spring was $40 \mathrm{~N} / \mathrm{m}$
Determine the energy stored by the spring when the force was 3.6 N
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Energy stored = \qquad

| 1 | 1 | A student investigated how the acceleration of a trolley varied with the resultant force |
| :--- | :--- | :--- | on the trolley.

The force on the trolley was provided by the masses on the string.

Figure 16 shows how the student set up the equipment.

Figure 16

This is the method used.

1. Release the trolley from the top of the runway.
2. As the card passes each light gate a timer turns on and off.
3. The datalogger calculates the velocity of the trolley at light gate \mathbf{A} and at light gate \mathbf{B}.
4. The datalogger calculates the acceleration using the two velocities.
5. Repeat steps $\mathbf{1}$ to $\mathbf{4}$ using different masses.
 light gate?

Tick (\checkmark) two boxes.

Angle of sloping runway

Distance between light gates \square
Length of card

Resultant force causing the acceleration

Time that light gates are blocked by the card

| 1 | 1 | 2 |
| :--- | :--- | :--- | Why was a sloping runway used instead of a flat runway?

Tick (\checkmark) one box.

To compensate for the effect of friction

To increase the effect of air resistance on the trolley \square
To make the trolley accelerate \square

| 1 | $\mathbf{1} .3$ | 3 |
| :--- | :--- | :--- | in this investigation?

Tick (\checkmark) two boxes.

Ensures readings are repeatable

Ensures readings are reproducible

No reaction time error

No systematic errors

Tick(V) two

Performs calculations automatically \square

| 1 | 1 | 4 |
| :--- | :--- | :--- | Write down the equation which links acceleration (a), mass (m) and resultant force (F).

\qquad

1	$\mathbf{1}$.	$\mathbf{5}$ The acceleration of the trolley was $2.4 \mathrm{~m} / \mathrm{s}^{2}$

The resultant force on the trolley was 1.2 N
Calculate the mass of the trolley.
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad kg

END OF QUESTIONS

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

