AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

COMBINED SCIENCE: SYNERGY

Higher Tier Paper 4 Physical sciences

Wednesday 12 June 2019 Morning Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a protractor
- a scientific calculator
- the periodic table (enclosed)
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Answer all questions in the spaces provided.

0	1	Figure 1 shows a crane being used to lift a shipping container.

Figure 1

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	Write the equation which links distance, force and work done.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ The container was lifted a height of $14 \mathrm{~m}, ~$

The crane did 3430000 J of work on the container.

Calculate the force exerted by the crane on the container.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Force $=$ \qquad N

$\mathbf{0}$	$\mathbf{1}$.3	$\mathbf{3}$	Write the equation which links power, time and work done.

\qquad
\qquad
$\left.\begin{array}{l|l}0 & 1\end{array}\right]$ The power of the crane was 68600 W
Calculate the time taken for the crane to do 3430000 J of work.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
Time taken $=$ \qquad Unit \qquad

| 0 | 2 |
| :--- | :--- |\quad A student used an electric motor to lift a mass.

He investigated how the efficiency of the motor varied with the mass lifted.

Figure 2 shows the apparatus used.

Figure 2

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$	Energy is transferred to the electric motor by the power supply.

Why is the energy transferred to the motor greater than the gravitational potential energy gained by the mass?

Tick (\checkmark) two boxes.

Energy is not conserved \square

Friction in the motor causes energy transfer to the surroundings

The temperature of the motor increases \square

Thermal energy from the surroundings is transferred to the mass \square

Wasted energy is destroyed \square

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ The student calculated the gravitational potential energy gained by different masses |
| :--- | :--- | :--- | as they were lifted.

The student used the equation:

$$
\text { gravitational potential energy }=\text { mass } \times 9.8 \times \text { height }
$$

Describe how the student could make accurate measurements to use in the calculations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2} .3$ | $\mathbf{3}$ Write the equation which links efficiency, total input energy transfer and |
| :--- | :--- | :--- | useful output energy transfer.

\qquad
\qquad

0	$\mathbf{2} .4$	The efficiency of the motor was 15%.

The student calculated that the useful output energy transfer was 1.20 J

Calculate the total input energy transfer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Total input energy transfer = \qquad J
 from a polymer called PET.

Both aluminium and PET can be recycled.

0	3	1
1	Figure 3 shows the recycling symbol for PET.	

Figure 3

Suggest why this symbol is used on a PET bottle.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{2}$ | 50000 |
| :--- | :--- | :--- | :--- | 70% of these aluminium cans are recycled.

Calculate the mass of aluminium that is recycled each year from drinks cans.
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad kg

| 0 | 3 | $\mathbf{3}$ Table 1 gives information about the Life Cycle Assessments (LCAs) of two types of |
| :--- | :--- | :--- | :--- | drinks containers.

Table 1

The following table cannot be reproduced here due to third-party copyright restrictions.

Evaluate the use of aluminium compared with the use of PET for drinks containers.
Your answer should include supporting calculations.
\qquad

Turn over for the next question

| 0 | 4 |
| :--- | :--- | A teacher gave a student an unknown electrical component hidden in a box.

The student connected the box in the circuit shown in Figure 4.
Figure 4

$\begin{array}{lll}\mathbf{0} & \mathbf{4} .1 & \mathbf{1} \text { The student measured the potential difference across the component and the }\end{array}$ current in the component.

She repeated this for several values of potential difference.
Give one way the circuit could be altered so that the potential difference across the component could be varied.
\qquad
\qquad

0	4	2
2		

\qquad
\qquad
\qquad
\qquad

Table 2 shows the student's results.
Table 2

Potential difference in volts	Current in amps
0.00	0.00
0.20	0.00
0.40	0.00
0.60	0.13
0.80	0.68
1.00	1.50

| 0 | 4 |
| :--- | :--- | .3 What was the resolution of the ammeter?

Tick (\checkmark) one box.
0.01 A

0.05 A

0.10 A

1.50 A

0	4	4

You should:

- plot the data from Table 2
- draw a line of best fit.

Figure 5

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{5}$ What was the unknown electrical component given to the student? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.

Diode

Filament lamp \square
Resistor

Thermistor \square

| 0 | $\mathbf{4}$ | 6 |
| :--- | :--- | :--- | An ohmic conductor has constant resistance when its temperature is constant.

Sketch a current-potential difference graph for an ohmic conductor at constant temperature on Figure 6.

Figure 6

Potential difference

0	5	One type of indigestion tablet contains:

- calcium carbonate
- magnesium carbonate
- non-active ingredients.

0	5	1
1	Peppermint oil is one of the non-active ingredients in the tablet.	

Suggest why peppermint oil is used in the tablet.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5} .2$	$\mathbf{2}$ In one indigestion tablet the mass of magnesium carbonate is 64.0 mg

Calculate the number of moles of magnesium carbonate in this indigestion tablet.
Give your answer to 3 significant figures.
Relative formula mass $\left(M_{r}\right)$ of magnesium carbonate $=84$
\qquad
\qquad
\qquad
\qquad
Number of moles $=$ \qquad

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{3}$ Magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$ in the tablet reacts with hydrochloric acid (HCl) in |
| :--- | :--- | :--- | the stomach.

Write a balanced chemical equation for the reaction.
\qquad $+$ \qquad \longrightarrow \qquad $+$ \qquad $+$ \qquad

A student investigated the temperature change when different masses of calcium carbonate were reacted with hydrochloric acid.

Figure 7 shows the apparatus used.
Figure 7

This is the method used.

1. Add $50 \mathrm{~cm}^{3}$ of hydrochloric acid to a polystyrene cup.
2. Record the temperature of the hydrochloric acid.
3. Add 1 g of calcium carbonate to the hydrochloric acid.
4. Stir the mixture.
5. Record the highest temperature of the mixture.

6 . Repeat steps $1-5$ with different masses of calcium carbonate.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{4}$ What was the dependent variable in this investigation?

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5} .5$ | $\mathbf{5}$ Suggest two changes to the investigation that would improve the accuracy of |
| :--- | :--- | :--- | the results.

Give a reason why each change would improve the accuracy.

Change 1 \qquad
Reason
\qquad
Change 2 \qquad
Reason \qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$.	6
	How should the results of the investigation be displayed?	

Give a reason for your answer.
Tick (\checkmark) one box.

Bar chart

Histogram

Line graph

Pie chart

Reason \qquad

| 0 | 6 |
| :--- | :--- | A student investigated how the horizontal distance travelled by a ball varied with release height.

The student used a ramp to launch the ball horizontally from the edge of a table.

Figure 8 shows some of the equipment the student used.

Figure 8

The ball was released from a point on the ramp and the student recorded where the ball hit the floor. The student measured the release height and the horizontal distance travelled by the ball.

| $\mathbf{0}$ | $\mathbf{6} .1$ | Describe what the student should do to make the measurements for this investigation |
| :--- | :--- | :--- | :--- | as accurate as possible.

\qquad

Question 6 continues on the next page

Figure 9 shows the student's results.

Figure 9

0	6.2

\qquad
\qquad

| 0 | 6.3 |
| :--- | :--- | The student concluded that the horizontal distance was directly proportional to the release height.

Explain why the student was incorrect.

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{7}$ | Conservation of momentum can be used to understand what happens |
| :--- | :--- | :--- | during collisions.

0	$\mathbf{7}$	$\mathbf{1}$

Explain the difference between a vector quantity and a scalar quantity.
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

0	7.	3

Person A collides with person B. After the collision they move together with the same velocity.

Figure 10

Before collision

Calculate the mass, m, of person \mathbf{B}.
\qquad
Mass, $m=$ \qquad kg

Person \mathbf{A} and person \mathbf{B} moving off together

Speed of Person A and Person B $=4.0 \mathrm{~m} / \mathrm{s}$

Mass, $m=$

0	8

0	$\mathbf{8}$.	$\mathbf{1}$ Which energy resource uses falling water to generate electricity?

\qquad

| $\mathbf{0}$ | $\mathbf{8} .2$ | $\mathbf{2}$ |
| :--- | :--- | :--- | of aluminium.

Aluminium ore is imported and used to produce aluminium. The aluminium is then exported.

Suggest one advantage of producing aluminium in Iceland.
\qquad
\qquad

Aluminium is produced from aluminium oxide by electrolysis.
The equation for the reaction is:

$$
2 \mathrm{Al}_{2} \mathrm{O}_{3} \longrightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}
$$

0	8	3	$C a l c u l a t e ~ t h e ~ m a s s ~ o f ~ a l u m i n i u m ~ p r o d u c e d ~ f r o m ~$
1000 kg of aluminium oxide.			

Relative atomic masses $\left(A_{r}\right): \quad \mathrm{Al}=27 \quad \mathrm{O}=16$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass of aluminium $=$
kg

0	8	.4
4	Complete the half equation for the production of aluminium at the negative electrode.	

\qquad

$$
+3 \mathrm{e}^{-}
$$

\qquad
\qquad

0	8	5	Explain why the electrolyte used is a mixture of aluminium oxide and cryolite.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8}$. | 6 |
| :--- | :--- | :--- | carbon dioxide.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 continues on the next page

| 0 | 8. | $\mathbf{7}$ | A ceramic material could be used as the positive electrode in the electrolysis of |
| :--- | :--- | :--- | :--- | aluminium oxide.

The ceramic material must be a good conductor of electricity.

Suggest two other properties the ceramic material must have for use in the electrolysis of aluminium oxide.

Give a reason why each property is needed.

Property 1 \qquad
Reason \qquad
\qquad
Property 2 \qquad
Turn over for the next question Turn over

| 0 | 9 |
| :--- | :--- | Figure 11 shows free body diagrams for a skydiver before and after her parachute opened.

Figure 11

Figure 12 shows the velocity-time graph for the skydiver.
The skydiver:

- left the plane at 0 s
- opened her parachute at 80 s
- landed on the ground at 120 s

Figure 12

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{1}$ What does the area under the graph represent?

Tick (\checkmark) one box.

The acceleration of the skydiver

The gravitational field strength of the Earth

The height from which the skydiver jumped

The mass of the skydiver

| $\mathbf{0}$ | $\mathbf{9} .2$ | Explain why the velocity of the skydiver changed between \mathbf{A} and \mathbf{C} on Figure 12. |
| :--- | :--- | :--- | :--- |

Your answer should refer to the forces on the skydiver.
\qquad

Question 9 continues on the next page

0	9.3
3	Between leaving the plane and opening her parachute, the change in gravitational

The speed of the skydiver when she opened her parachute was $55 \mathrm{~m} / \mathrm{s}$
The mass of the skydiver was 80 kg

Calculate the energy transferred to the surroundings.
\qquad
Energy transferred to surroundings = \qquad J

