$A Q A$

Surname

Other Names
Centre Number
Candidate Number
Candidate Signature
GCSE
COMBINED SCIENCE: TRILOGY
Higher Tier
Biology Paper 1H

8464/B/1H
Tuesday 14 May 2019 Afternoon
Time allowed: 1 hour 15 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

2

For this paper you must have:

- a ruler
- a scientific calculator.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

4

01

FIGURE 1 shows a human heart.
FIGURE 1

5

0 1. 1

Which blood vessel carries deoxygenated blood away from the heart to the lungs? [1 mark]

Tick (\checkmark) ONE box.

A

C

[Turn over]

011.2

The natural resting heart rate is controlled by a group of cells that act as a pacemaker.

Where in the heart are 'pacemaker cells' found? [1 mark]

Tick (\checkmark) ONE box.

Left atrium

Left ventricle

Right atrium
Right ventricle

Some people may be treated with a drug to slow their heart rate.

\section*{| 0 | 1. | 3 |
| :--- | :--- | :--- |}

Digitalis is a drug that slows the heart rate.

Where does the drug digitalis originate from? [1 mark]

Tick (\checkmark) ONE box.

Bacteria

Foxgloves

Mould

Willow
[Turn over]
Beta blockers are another type of drug that slows the heart rate.
TABLE 1, on the opposite page, shows information for
people who do not take beta blockers and for people who do
take beta blockers.
Stroke volume is the volume of blood pumped out of the
heart each time it beats.
Cardiac output is the total volume of blood pumped out of
the heart each minute.
TABLE 1

	No beta blockers taken		Taking beta blockers	
	At rest	During exercise	At rest	During exercise
Heart rate in beats per minute	68	150	52	88
Stroke volume in cm 3	80	120	X	98
Cardiac output in cm per minute	5440	18000	2800	8624

[Turn over]

10
$\stackrel{\cong}{E}$

	Calculate stroke volume X in TABLE 1, on page 9 Use the equation: cardiac output $=$ stroke volume \times heart rate Give your answer to $\mathbf{2}$ significant figures. [3 mark

12
Repeat of TABLE 1

	No beta blockers taken		Taking beta blockers	
	At rest	During exercise	At rest	During exercise
Heart rate in beats per minute	68	150	52	88
Stroke volume in cm^{3}	80	120	X	98
Cardiac output in cm^{3} per minute	5440	18000	2800	8624

13
[Turn over]
$\|\|!\mid$
$|||||||||||||||\mid$
[Turn over]
$\frac{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{N}}}}}}}}}}}{}$

BLANK PAGE

$0 \mid 2$

This question is about digestion.

0 2. 1

Name the enzyme that digests starch in the human digestive system. [1 mark]

[Turn over]

A student set up a model to represent the digestion and absorption of food molecules in the digestive system.

FIGURE 2 shows the student's model.
FIGURE 2

This is the method used.

1. Fill a test tube with water at $37^{\circ} \mathrm{C}$
2. Test the water for starch and for sugar.
3. Mix together starch and enzyme solution and immediately test it for starch and for sugar.
4. Fill some partially permeable tubing with the starch and enzyme mixture.
5. Seal the tubing and place it in the test tube of water.
6. Place the test tube in a water bath at $37{ }^{\circ} \mathrm{C}$
7. After 30 minutes, test the mixture inside the partially permeable tubing and test the water in the test tube for starch and for sugar.
[Turn over]

20

BLANK PAGE

0.2 . 2

Suggest which parts of the body the partially permeable tubing and the water in the test tube represent. [2 marks]

Partially permeable tubing

Water in the test tube

[Turn over]

22
TABLE 2 shows the results.
TABLE 2

Test	Description of liquid	Result of starch test	Result of sugar test
1	Mixture inside tubing at start	\checkmark	\times
2	Water in the test tube at start	\times	\times
3	Mixture inside tubing after 30 minutes	\checkmark	\checkmark
4	Water in the test tube after 30 minutes	\times	\checkmark

KEY
$\checkmark=$ Present
$x=$ Not present

23

$0 \mid 2.3$

Name the reagents used to test for starch and for sugar. [2 marks]

Starch

Sugar

0.2 .4

Why was there no sugar present in test 1? [1 mark]
\qquad
\qquad

24
REPEAT OF TABLE 2

Test	Description of liquid	Result of starch test	Result of sugar test
1	Mixture inside tubing at start	\checkmark	\times
2	Water in the test tube at start	\times	\times
3	Mixture inside tubing after 30 minutes	\checkmark	\checkmark
4	Water in the test tube after 30 minutes	x	\checkmark

KEY
$\checkmark=$ Present
$x=$ Not present

25
0.2 .5

Explain the results for test 3 . [2 marks]

[Turn over]

26

BLANK PAGE

27

0.2. 6

Explain the results for test 4 . [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

28

$0 \mid 3$

A student used a potometer to investigate the rate of water uptake in a plant shoot.

FIGURE 3 shows a potometer.
FIGURE 3

29
As the shoot takes in water the air bubble moves.

The rate of water uptake is the distance the air bubble moves in a given time.

This is the method used.

1. Place the potometer in moist air at $25^{\circ} \mathrm{C}$
2. Position the air bubble at 0 mm in the capillary tube.
3. Record the position of the air bubble in the capillary tube every minute for 5 minutes.
4. Repeat steps 2 and 3 with the potometer in different conditions.
[Turn over]

TABLE 3 shows the conditions used.
TABLE 3

Investigation	Conditions
A	Moist air at $25^{\circ} \mathrm{C}$
B	Dry air at $15^{\circ} \mathrm{C}$
C	Dry air at $25^{\circ} \mathrm{C}$

After investigation A the air bubble had moved part way along the capillary tube.

Suggest how the student moved the air bubble back to 0 mm for the start of investigation B. [1 mark]
\qquad
\qquad

03.2

Capillary tubing is very narrow.
Explain why narrow tubing was used. [2 marks]

[Turn over]

FIGURE 4 shows the results for investigation A .

FIGURE 4
Position
of air
bubble
in $\mathbf{m m}$

Time in minutes

33
0.3 . 3

The cross-sectional area of the capillary tube was $0.8 \mathrm{~mm}^{2}$

Calculate the rate of water uptake for investigation \mathbf{A} in $\mathrm{mm}^{3} / \mathrm{min}$ [3 marks]
\qquad
\qquad
\qquad
\qquad

Rate $=$
$\mathrm{mm}^{3} / \mathrm{min}$
[Turn over]

34

0	3

TABLE 4 shows the results from investigation B.
TABLE 4

Time in minutes	Position of air bubble in mm
0	0
1	6
2	16
3	22
4	30
5	42

Plot the data from TABLE 4 on FIGURE 4, on page 32.

You should:

- draw a line of best fit
- label the line B.
[3 marks]

35

\section*{| 0 | 3. |
| :--- | :--- |}

Investigation C was carried out in dry air at $25{ }^{\circ} \mathrm{C}$

Draw a line on FIGURE 4, on page 32, to show the results you would expect for investigation \mathbf{C}.

Label the line C. [1 mark]
[Turn over]

The investigations were carried out in daylight.

The air bubble would NOT move if the investigations were done in the dark.

Explain why. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$0 \mid 4$

Pathogens are microorganisms that cause infectious diseases.

0.4. 1

What type of pathogen causes malaria?
[1 mark]
Tick (\checkmark) ONE box.

Bacterium

Fungus

Protist

Virus
[Turn over]

014.2

Give TWO methods used to prevent people catching malaria.

Give a reason why each method works. [4 marks]
Method 1

Reason

Method 2

Reason

04 . 3

Describe TWO differences between a bacterial cell and a eukaryotic cell. [2 marks]
1
\qquad

2
\qquad
\qquad
[Turn over]

A scientist investigated the population growth of bacteria in a culture solution.

At the start of the investigation the culture solution contained all the nutrients the bacteria needed.

The scientist determined the number of living bacterial cells in the solution every hour over two days.

FIGURE 5 shows the apparatus used.
FIGURE 5
Culture bottle

Culture solution
0.4 . 4

Describe why there are air holes in the cap of the culture bottle. [1 mark]

[Turn over]

FIGURE 6 shows the scientist's results. FIGURE 6

Number of
living bacterial cells per cm ${ }^{3}$
\uparrow

Time in hours
Bacteria
added

\section*{| 0 | 4 |
| :--- | :--- |}

Give ONE reason for what is happening to the number of bacteria at each of the stages. [4 marks]

Stage A

Stage B

Stage C

Stage D

[Turn over]

0.4 . 6

FIGURE 7 shows two cubes.
Cube X represents a bacterial cell.
Cube Y represents a small multicellular organism.

FIGURE 7
CUBE X
0.0002 cm

CUBE Y

45

A bacterial cell can absorb all the nutrients it needs by diffusion through its outer surface.

Explain why a multicellular organism CANNOT absorb all the nutrients it needs by diffusion through its outer surface.

You MUST include calculations in your answer.

Use FIGURE 7. [5 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]
46

47

BLANK PAGE

[Turn over]

48

$0 \mid 5$

FIGURE 8 shows a root hair viewed using a microscope.

FIGURE 8
It is not drawn accurately.

49

015.1

The root hair was viewed at a magnification of $\times 50$

The image length of the root hair $\mathrm{X}-\mathrm{Y}$ is 43 mm

Calculate the real length of the root hair in micrometres ($\mu \mathrm{m}$). [4 marks]

Real length =
$\mu \mathrm{m}$
[Turn over]

50

0.5 .2

A microscope has a $\times 5$ eyepiece lens.
Describe how to use this microscope to observe a prepared slide of root hair cells at a magnification of $\times 50$ [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

51

[Turn over]

52

$$
\begin{aligned}
& \text { Root hair cells absorb water and mineral ions from the soil. } \\
& \text { A scientist investigated the rate of nitrate ion uptake by two } \\
& \text { seedlings. } \\
& \text { FIGURE } 9 \text { shows how the investigation was set up. } \\
& \text { FIGURE } 9 \\
& \text { Oxygen } \rightarrow \text { Seedling }
\end{aligned}
$$

by
absorbed
ions
The scientist determined the mass of nitrate
each seedling every 30 minutes for 4 hours.
TABLE 5, on page 54 , shows the results.
[Turn over]

54
TABLE 5

Time in hours	Total mass of nitrate ions absorbed by seedling in arbitrary units	
	With oxygen added	With no oxygen added
0	0	0
0.5	100	60
1.0	145	95
1.5	170	105
2.0	195	115
2.5	215	120
3.0	235	125
3.5	250	130
4.0	265	130

$$
\begin{array}{l|l|l}
\hline 0 & 5 & 3 \\
\text { Describe the changes in the rate of absorption of nitrate ions } \\
\text { for the seedling with NO oxygen added. } \\
\text { Use information from TABLE 5. [3 marks] }
\end{array}
$$

[Turn over]
|l!!ull

57
\square
[Turn over]
$||||||||||||||\mid$

| 0 | 5 |
| :--- | :--- | :--- |

Describe how nitrate ions are used in a plant to help the
plant grow. [3 marks]

END OF QUESTIONS	$\boxed{18}$								
\|	I								

59

BLANK PAGE

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/NC/Jun19/8464/B/1H/E3

