AQA

Α

Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
GCSE
COMBINED SCIENCE: TRILOGY
Foundation Tier
Chemistry Paper 1F
8464/C/1F
Thursday 14 May 2020 Morning
Time allowed: 1 hour 15 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.

BLANK PAGE

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

0 1.1 What is the pH of sulfuric acid? [1 mark]

Tick (✓) ONE box.

01.2 An acid reacts with zinc to produce zinc chloride and hydrogen.

Which acid reacts with zinc to produce zinc chloride? [1 mark]

Tick (✓) ONE box.

Hydrochloric acid

Nitric acid

Sulfuric acid

0 1.3 What type of substance is zinc chloride? [1 mark]

Tick (✓) ONE box.

0 1 . 4 An alkali is a base in solution.

Which compound is an alkali? [1 mark]

Tick (\checkmark) ONE box.

Sodium hydroxide

Sodium nitrate

Sodium sulfate

01.5 The formula of the copper ion is Cu²⁺

The formula of the oxide ion is O^{2-}

What is the formula of copper oxide? [1 mark]

Tick (✓) ONE box.

A student reacts an acid with copper oxide.

0 1.6 The reaction between the acid and copper oxide is very slow at room temperature.

How could the student speed up the reaction? [1 mark]

Choose the answer from the list. [1 mark]

- in excess
- in solution
- molten
- soluble

The student adds copper oxide to the

acid until the copper oxide is

01.8 The student filters the unreacted copper oxide from the solution.

Which apparatus does the student use? [1 mark]

Tick (✓) ONE box.

0 1.9 What process is used to produce crystals of a salt from a salt solution? [1 mark]

[Turn over]

9

A student investigated the temperature change when metal X was added to copper sulfate solution.

This is the method used.

- 1. Add 25 cm³ of copper sulfate solution to a beaker.
- 2. Measure the temperature of the copper sulfate solution.
- 3. Add 1.0 g of metal X and stir.
- 4. Measure the highest temperature reached when metal X is added to copper sulfate solution.
- 5. Repeat steps 1 to 4 with different metals.

FIGURE 1 shows the apparatus used.

FIGURE 1

FIGURE 2 shows the thermometer reading of the copper sulfate solution at the start of the investigation.

FIGURE 2

BLANK PAGE

02.1	The highest temperature reached when metal X was added to copper sulfate solution was 35.5 °C			
	Determine the temperatumetal X is added to copp	ure change when per sulfate solution.		
	Use FIGURE 2 on page 1	1. [2 marks]		
	Highest temperature =	35.5 °C	2	
	Temperature at start =	°(2	
	Temperature change =	°(3	
02.2	Give TWO variables the the same in this investig	student should keep ation. [2 marks]		
	2		_	

BLANK PAGE

02.3 The student repeated the experiment with metal Y.

TABLE 1 shows four results for metal Y.

TABLE 1

	Test 1	Test 2	Test 3	Test 4
Temperature change in °C	9.2	7.3	9.5	9.2

Calculate the mean temperature change for metal Y.

Do NOT include the anomalous result in your calculation. [2 marks]

Mean temperature change =

°C

The more reactive the metal added to copper sulfate solution, the greater the temperature change.

FIGURE 3 shows a reactivity series.

FIGURE 3

02. **4** The student repeated the experiment.

The student added:

- magnesium to copper sulfate solution
- an unknown metal A to copper sulfate solution.

TABLE 2 shows the results.

TABLE 2

Metal	Temperature change in °C
Magnesium	12
Metal A	8

The student concludes metal A is zinc.

Give ONE reason why the student is correct.

Use FIGURE 3 and TABLE 2. [1 mark]

REPEAT OF FIGURE 3

Potassium	most reactive
Calcium	
Magnesium	
Zinc	
Copper	
Silver	least reactive

02.5 The student did the experiment with silver and copper sulfate solution.

What happens to the temperature of the mixture? [1 mark]

Use FIGURE 3.

Tick (✓) ONE box.

Decreases

Increases

Stays the same

021.6 Suggest ONE reason why the student should NOT add potassium metal to copper sulfate solution. [1 mark]

02.7 100 cm³ of the copper sulfate solution contains 1.8 g of copper sulfate.

> Calculate the mass of copper sulfate in 25 cm³ of this copper sulfate solution. [2 marks]

Mass = g

This question is about gold and compounds of gold.

In the alpha particle scattering experiment alpha particles are fired at gold foil.

Alpha particles are positively charged.

FIGURE 4 shows the results.

FIGURE 4

0 3.1 Some alpha particles are deflected.

Complete the sentence.

Choose the answer from the list. [1 mark]

- negatively charged
- not charged
- positively charged

Some alpha particles are deflected because

. •

the nucleus of the atom is

03.2 Why are most alpha particles NOT deflected? [1 mark]

Tick (✓) ONE box.

The atom is a tiny sphere that cannot be divided.

The atom is mainly empty space.

The electrons orbit the nucleus at specific distances.

03.3 What was ONE conclusion from the alpha particle scattering experiment? [1 mark]

Tick (✓) ONE box.

The mass is concentrated at the centre of the atom.

The mass is concentrated at the edge of the atom.

The mass is spread evenly throughout the atom.

Gold reacts with the elements in Group 7 of the periodic table.

03.4 What are Group 7 elements known as? [1 mark]

Tick (✓) ONE box.

Noble gases

03.5 Fluorine, chlorine and bromine react with gold.

Which element will be the most reactive with gold? [1 mark]

Tick (✓) ONE box.

Fluorine

Chlorine

Bromine

0 3.94 g of gold reacts with chlorine to produce 6.07 g of gold chloride.

The word equation for the reaction is:

gold + chlorine \rightarrow gold chloride

Calculate the mass of chlorine that reacts with 3.94 g of gold. [1 mark]

Mass = _____ g

BLANK PAGE

03.7 Calculate the relative formula mass (M_r) of gold chloride (AuCl₃).

Relative atomic masses (*A*_r):

Cl = 35.5 Au = 197

[2 marks]

Relative formula mass (M_r) =

This question is about elements and compounds.

04.1 FIGURE 5 shows the proportion of elements in the periodic table that are metals and non-metals.

FIGURE 5

Determine the percentage of the elements in FIGURE 5 that are metals. [2 marks]

04.2 Give TWO physical properties of metals. [2 marks]

1 _			
2			
-			

0 4 . 3 Sodium reacts with chlorine to produce sodium chloride.

> Balance the equation for the reaction. [1 mark]

$$Na + Cl_2 \rightarrow NaCl$$

FIGURE 6 shows part of the structure of sodium chloride (NaCl).

FIGURE 6

Sodium chloride

0 4 . 4 What holds the particles together in sodium chloride?

Use FIGURE 6. [1 mark]

Tick (\checkmark) ONE box.

Electrostatic attractions

Intermolecular forces

Metallic bonds

04.5 Solid sodium chloride does not conduct electricity.

Give TWO ways in which sodium chloride can be made to conduct electricity. [2 marks]

1			
2			
-			

[Turn over]

8

This question is about elements in the periodic table.

0 5.1 What property was used to arrange elements in early periodic tables? [1 mark]

Tick (✓) ONE box.

Atomic number

Atomic weight

Mass number

0 5.2 In early periodic tables, iodine (I) was placed before tellurium (Te).

Mendeleev placed iodine after tellurium.

FIGURE 7 shows part of Mendeleev's periodic table.

FIGURE 7

16	19
O	F
32	35.5
S	Cl
79	80
Se	Br
128	127
Te	I

Suggest ONE reason why Mendeleev placed iodine in the column shown in FIGURE 7. [1 mark]

TABLE 3 shows the melting points of three Group 1 metals.

TABLE 3

Metal	Melting point in °C
Lithium	180
Sodium	98
Potassium	63

0 5.3 What state is lithium at 100 °C?

Use TABLE 3. [1 mark]

Tick (✓) ONE box.

Gas

Liquid

Solid

BLANK PAGE

REPEAT OF TABLE 3

Metal	Melting point in °C
Lithium	180
Sodium	98
Potassium	63

0 5 . 4 Complete the graph in FIGURE 8 on the opposite page.

Use TABLE 3.

You should:

- complete the scale on the y-axis
- draw bars to show the melting points of sodium and potassium.

[3 marks]

0 5.5 Lithium reacts with chlorine to produce lithium chloride.

FIGURE 9

FIGURE 9 shows what happens to the electrons in the outer shells when a lithium atom reacts with a chlorine atom.

The dots (o) and crosses (x) represent electrons.

 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & &$

Describe what happens to a lithium atom and to a chlorine atom when they react.

Use FIGURE 9 to answer in terms of electrons. [3 marks]

0 5.6 Lithium and potassium are in the same group of the periodic table.

> **FIGURE 10 represents the electronic** structures of a lithium atom and of a potassium atom.

FIGURE 10

Lithium atom

Potassium atom

Give TWO reasons why potassium is more reactive than lithium. [2 marks]

1 2 _____

This question is about the extraction of aluminium.

0 6.1 An aluminium atom is represented as:

27 13 Al

Give the number of electrons and neutrons in the aluminium atom. [2 marks]

Number of electrons

Number of neutrons

Aluminium is extracted by the electrolysis of a molten mixture of aluminium oxide and cryolite.

FIGURE 11 shows the cell used for the electrolysis.

06.2 Aluminium is produced by the reduction of aluminium oxide (Al_2O_3) .

What is meant by the term reduction? [1 mark]

0 6.3 Oxygen is formed at the positive carbon electrodes.

> Explain why the positive carbon electrodes must be continually replaced. [3 marks]

What are the free moving, charged particles in a:

- carbon electrode (made from graphite)
- molten mixture of aluminium oxide and cryolite
- metal wire?

[3 marks]

Carbon electrode (made from graphite)

Molten	mixture	of	aluminium	oxide	and

cryolite

Metal wire

[Turn over]

9

This question is about substances with covalent bonding.

07.1 FIGURE 12 shows a ball and stick model of a water molecule (H_2O).

FIGURE 12

Suggest ONE limitation of using a ball and stick model for a water molecule. [1 mark]

07.2 Ice has a low melting point.

Water molecules in ice are held together by intermolecular forces.

Complete the sentence. [1 mark]

Ice has a low melting point because the

intermolecular forces are

07. **3** FIGURE 13 shows the structure of a molecule.

FIGURE 13

What is the molecular formula of the molecule in FIGURE 13? [1 mark]

Diamond has a giant covalent structure.

07.4 What is the number of bonds formed by each carbon atom in diamond? [1 mark]

Tick (✓) ONE box.

07.5 Give TWO physical properties of diamond. [2 marks]

2

07.6 Name TWO other substances with giant covalent structures. [2 marks]

1			
2			

BLANK PAGE

Some students investigated the thermal decomposition of metal carbonates.

The word equation for the reaction is:

metal carbonate

 \rightarrow metal oxide + carbon dioxide

The students made the following hypothesis:

'When heated the same mass of any metal carbonate produces the same mass of carbon dioxide.'

The students heated a test tube containing copper carbonate.

TABLE 4 shows their results.

TABLE 4

Time the test tube containing copper carbonate was heated in mins	0	2	4	6
Mass of test tube and contents in g	17.7	17.1	17.0	17.0

Plan a method the students could use to test their hypothesis.

You should show how the students use their results to test the hypothesis.

You do NOT need to write about safety precautions. [6 marks]

END OF QUESTIONS

BLANK PAGE

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
TOTAL		

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/NC/Jun20/8464/C/1F/E2

