AQA

Surname \qquad
Other Names

Centre Number

Candidate Number
Candidate Signature
I declare this is my own work.

GCSE

COMBINED SCIENCE: TRILOGY

Foundation Tier
Chemistry Paper 2F

8464/C/2F

Wednesday 10 June 2020
Morning
Time allowed: 1 hour 15 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

0	1	$C r u d e ~ o i l ~ i s ~ a ~ m i x t u r e ~ o f ~ h y d r o c a r b o n s . ~$

0	1.1	Complete the sentences.

Choose answers from the list. [2 marks]

- air
- enzymes
- mud
- plankton
- trees

Crude oil is the remains of
\qquad -

Millions of years ago biomass was buried under

| 0 | 1.2 |
| :--- | :--- | There are three stages, A, B and C, in separating hydrocarbons from crude oil.

Stage A Hydrocarbons evaporate

Stage B Crude oil is heated
Stage C Vapours condense

Give the correct order for stages A, B and C. [1 mark]

First stage
Second stage \qquad
Third stage
[Turn over]

| 0 | 1 | .3 |
| :--- | :--- | :--- | What is the name of the process used in separating hydrocarbons from crude oil? [1 mark]

Tick (\checkmark) ONE box.

Chromatography

Filtration

Fractional distillation

0	1.4	Alkanes are hydrocarbons.

FIGURE 1 represents an alkane.

FIGURE 1

What is the formula of the alkane in FIGURE 1? [1 mark]
C
H

0	1.5	What does X represent in FIGURE 1? [1 mark]

Tick (\checkmark) ONE box.

Covalent bond

lonic bond

Metallic bond
[Turn over]

| 0 | 1. | 6 |
| :--- | :--- | :--- |${ }^{2}$ What is the general formula for alkanes? [1 mark]

Tick ($\sqrt{ }$) ONE box.

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$

0	1	.7
7	Hydrocarbons are used to make polymers.	

In one year 8.0 billion plastic bags were used.
The next year there was a charge for plastic bags and only 1.3 billion plastic bags were used.

Calculate the decrease in the number of plastic bags used. [1 mark]
\qquad

Decrease $=$ \qquad billion

| 0 | 2 |
| :--- | :--- | :--- |\quad This question is about carbon dioxide in the Earth's atmosphere.

FIGURE 2, on the opposite page, shows how the percentage of carbon dioxide in the Earth's atmosphere has changed over 4.6 billion years.

| 0 | 2 | 1 |
| :--- | :--- | :--- | What was the highest percentage of carbon dioxide in the Earth's atmosphere?

Use FIGURE 2. [1 mark]
Highest percentage $=$
\%

FIGURE 2

Percentage of
carbon dioxide
in the Earth's
atmosphere

Billions of years ago
[Turn over]

| 0 | 2 |
| :--- | :--- | $\mathbf{2}$ The percentage of carbon dioxide in the atmosphere has decreased since Earth's early atmosphere.

Which TWO processes have decreased the percentage of carbon dioxide in the Earth's atmosphere? [2 marks]

Tick (\checkmark) TWO boxes.

Combustion of fuels

Formation of sedimentary rocks

Photosynthesis

Volcanic activity

| 0 | 2 | 3 |
| :--- | :--- | :--- | over the life cycle of a product can be measured.

What name is given to the total amount of carbon dioxide emitted during the life cycle of a product? [1 mark]

Tick (\checkmark) ONE box.

Carbon footprint

Global dimming

Greenhouse effect
[Turn over]

Carbon dioxide dissolves in water.
FIGURE 3 shows the mass of carbon dioxide dissolved in water at different temperatures.

FIGURE 3

Mass of
carbon dioxide
in g dissolved
in $1 \mathrm{dm}^{3}$ of water

0	2.	4
Complete TABLE		
1.		

Use FIGURE 3. [2 marks]
TABLE 1

Water temperature in ${ }^{\circ} \mathrm{C}$	Mass of carbon dioxide in g dissolved in $1 \mathrm{dm}^{3}$ of water
5	
15	

| 0 | 2 | 5 | Calculate the difference in the mass of carbon |
| :--- | :--- | :--- | :--- | dioxide dissolved in $1 \mathrm{dm}^{3}$ of water at $5^{\circ} \mathrm{C}$ and at $15{ }^{\circ} \mathrm{C}$

Use TABLE 1. [1 mark]

Mass = \qquad g
[Turn over]

0	2	6
6	Carbon dioxide is a greenhouse gas.	

The greenhouse effect happens in four stages.
The four stages are:
Stage A Carbon dioxide stops longer wavelength radiation escaping

Stage B Radiation is absorbed by the Earth
Stage C Longer wavelength radiation is emitted

Stage D Shorter wavelength radiation enters the atmosphere.

What is the correct order of stages A, B, C and D? [1 mark]

Tick (\checkmark) ONE box.

$$
\mathbf{C}, \mathrm{A}, \mathrm{~B}, \mathrm{D}
$$

C, D, B, A

D, B, C, A

D, C, B, A

| 0 | 2 | 7 Changes in the percentage of carbon dioxide in |
| :--- | :--- | :--- | the Earth's atmosphere cause climate change.

Give TWO effects of climate change. [2 marks]
1
\qquad
\qquad
2
[Turn over]

| 0 | 3 | A student investigated the mass of dissolved |
| :--- | :--- | :--- | solids in water samples.

FIGURE 4 shows the apparatus used.

FIGURE 4

This is the method used.

1. Record the mass of a dry evaporating basin.
2. Pour $25 \mathrm{~cm}^{3}$ of the water sample into the evaporating basin.
3. Place the evaporating basin on the beaker for 10 minutes.
4. Record the mass of the evaporating basin and contents.

0	3	1
1		

Tick (\checkmark) ONE box.

Balance

Beaker

Measuring cylinder

Thermometer
[Turn over]

One error is that droplets of water collect on the bottom of the evaporating basin.

| 0 | 3 |
| :--- | :--- | :--- | .2 Suggest how this error affects the mass of the evaporating basin and contents. [1 mark]

\qquad
\qquad
\qquad

0	3	.3 How can this error be corrected? [1 mark]

| 0 | 3 | .4 |
| :--- | :--- | :--- | Another error in the method is that not all the water was removed from the water sample.

How can this error be corrected? [1 mark]
Tick (\checkmark) ONE box.

Add more boiling water to the beaker.

Heat until the mass of the evaporating basin and contents is constant.

Stir the water sample in the evaporating basin with a glass rod.

0	3	5

What is the name of this process? [1 mark]
\qquad
\qquad
[Turn over]

Another student did the experiment correctly with three water samples A, B and C.

TABLE 2 shows the results.
TABLE 2

Water sample	Mass of dissolved solids in g			
	Test 1	Test 2	Test 3	Mean
A	0.23	0.23	0.20	X
B	0.03	0.07	0.02	0.04
C	1.45	1.60	1.45	1.50

| 0 | 3 | 6 |
| :--- | :--- | :--- | The range is the difference between the largest value and the smallest value.

Which water sample has the greatest range of results? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">3</td>
<td style="text-align: left; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">.7 Calculate the mean mass X for water sample $A . ~$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 3 | .7 Calculate the mean mass X for water sample $A . ~$ |
| :--- | :--- | :--- |</table-markdown></div> Use TABLE 2. [2 marks]

\qquad
\qquad
\qquad
\qquad
\qquad $X=$ g
[Turn over]

| 0 | 3. | .8 What is the dependent variable in this |
| :--- | :--- | :--- | experiment? [1 mark]

Tick (\checkmark) ONE box.

Mass of dissolved solids

Time taken for water to heat

Type of water sample

Volume of boiling water

| 0 | 3 | 9 A different water sample contains 3.6 g of |
| :--- | :--- | :--- | dissolved solids in $150 \mathrm{~cm}^{3}$

Calculate the mass of dissolved solids in $25 \mathrm{~cm}^{3}$ of this sample. [2 marks]
\qquad
\qquad
\qquad
\qquad

Mass = g
[Turn over]

0	4
This question is about hydrogen peroxide.	

| 0 | 4 | 1 |
| :--- | :--- | :--- | hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is:

$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
Complete the word equation for the decomposition of hydrogen peroxide. [2 marks]
hydrogen peroxide

$+$

BLANK PAGE

[Turn over]

A student investigated the effect of different catalysts on the decomposition of hydrogen peroxide.

The student measured the volume of gas collected every 30 seconds for 5 minutes.

FIGURE 5 shows the apparatus used.
FIGURE 5

| 0 | 4 | .2 |
| :--- | :--- | :--- | Which TWO variables should the student keep the same to make the investigation a fair test? [2 marks]

Tick (\checkmark) TWO boxes.

Concentration of hydrogen peroxide

Mass of catalyst

Size of gas syringe

Type of catalyst

Volume of gas collected
[Turn over]

| 0 | 4 |
| :--- | :--- | 3 FIGURE 6 shows a gas syringe.

FIGURE 6

What is the volume of gas in the syringe?
[1 mark]
Volume $=$ cm^{3}

BLANK PAGE

[Turn over]

TABLE 3 shows the student's results for one catalyst.

TABLE 3

Time in minutes	0.0	0.5	1.0	1.5	2.0
Volume of gas in cm^{3}	0	34	54	68	78

0	4	4
. Six of the other results have been plotted on		

Complete the graph in FIGURE 7.
You should:

- plot the results from TABLE 3
- draw a line of best fit for all of the results.
[3 marks]

FIGURE 7

Volume of
gas in cm^{3}

[Turn over]

The student repeated the experiment with other catalysts and plotted a graph for each of the catalysts used.

0	4	.5
5		

\qquad
\qquad

0	4	6
All the graphs level off at the same volume of		

Suggest why. [1 mark]
\qquad
\qquad

| 0 | 4 | .7 |
| :--- | :--- | :--- | the temperature of the hydrogen peroxide.

Why is the rate of reaction faster when the temperature of the hydrogen peroxide is increased? [2 marks]

Tick (\checkmark) TWO boxes.

The concentration of hydrogen peroxide decreases.

The particles are moving more slowly.

The particles have more energy.

There are more particle collisions per second.

There are more particles per unit volume.

0	5	This question is about mixtures.

0	5	1

Tick (\checkmark) ONE box.

Air

Gold

Methane

Nitrogen

0	5	2 Food colourings are often mixtures of dyes.

What name is given to mixtures that are designed as useful products? [1 mark]
[Turn over]

A student investigated a purple food colouring, Y, using chromatography.

The student compares Y with dyes A, B and C.

0	5	3 FIGURE 8 shows the apparatus used.

FIGURE 8

Chromatography involves a stationary phase and a mobile phase.

Draw ONE line from each phase to what is used for that phase.

Use FIGURE 8. [2 marks]

PHASE

Mobile phase

Food colouring

Stationary phase

Pencil line

Solvent
[Turn over]

FIGURE 9 shows the student's results.
FIGURE 9

| 0 | 5.4 | What THREE conclusions can you make about |
| :--- | :--- | :--- | the dyes in food colouring Y? [3 marks]

1

2

0	5	5
5		

Distance moved by dye G $=60 \mathrm{~mm}$
Distance moved by solvent $=80 \mathrm{~mm}$
Calculate the R_{f} value of dye G.
$R_{f}=\frac{\text { distance moved by dye } G}{\text { distance moved by solvent }}$
[2 marks]
\qquad
\mathbf{R}_{f}
[Turn over]

| 0 | 6 |
| :--- | :--- | :--- | This question is about the Earth's resources.

When most fuels burn, carbon dioxide is produced.

Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is a fuel.

0	6	1
1	Balance the equation for the combustion of	

$\mathrm{C}_{3} \mathrm{H}_{8}+$

$$
\mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

0	6	2

Give the result of the test. [2 marks]
Test

Result
\qquad

0	6	3
3	Propane can be cracked to produce propene	

Complete the symbol equation for the reaction. [1 mark]
$\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow$

propane
propene
hydrogen

0	6.4	Describe the test for hydrogen.

Give the result of the test. [2 marks]
Test

Result \qquad
\qquad
\qquad
[Turn over]

0	6.5

Describe the test for alkenes.
Give the colour change in the test. [3 marks]
Test

Colour change to \qquad

BLANK PAGE

[Turn over]

| 0 | 7 | Some students investigated the effect of |
| :--- | :--- | :--- | temperature on the rate of reaction.

$0 \mid 7.1$ The students reacted sodium thiosulfate solution with hydrochloric acid.

This is the method used.

1. Use a beaker to measure $50 \mathrm{~cm}^{3}$ of heated sodium thiosulfate solution into a conical flask.
2. Measure the temperature of the room.
3. Put the conical flask on a black cross drawn on a piece of paper.
4. Start a timer.
5. Use the same beaker to measure $10 \mathrm{~cm}^{3}$ of hydrochloric acid into the conical flask.
6. Stop the timer when the cross is no longer visible.

The students repeated the experiment at a different room temperature.

FIGURE 10, on the opposite page, shows the apparatus.

FIGURE 10

[Turn over]

BLANK PAGE

The method contains errors and does NOT produce accurate results.

Describe a method the students should use to produce accurate results.

You do NOT need to write about safety precautions. [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]
50
[Turn over]

Some students investigated the effect of temperature on the rate of a different reaction.

They recorded the loss of mass from their apparatus at $40^{\circ} \mathrm{C}$

FIGURE 11, on the opposite page, shows the results.
$0 \mid 7.2$ Calculate the mean rate of reaction between 1 minute and 3 minutes at $40^{\circ} \mathrm{C}$

Use FIGURE 11 and the equation:
Mean rate of reaction = change in mass of gas in g time in mins
[3 marks]

Mean rate of reaction = g/min

FIGURE 11

Loss
of mass
in grams

[Turn over]

REPEAT OF FIGURE 11

Loss
of mass
in grams

| 0 | 7 | 3 Draw a curve on FIGURE 11, on the opposite |
| :--- | :--- | :--- | page, for the results you would expect at a temperature of $50^{\circ} \mathrm{C}$ instead of $40^{\circ} \mathrm{C}$ [2 marks]

END OF QUESTIONS

	Additional page, if required.
	Write the question numbers in the left-hand margin.

\qquad

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

