AQA

Surname

Other Names \qquad

Centre Number

Candidate Number

Candidate Signature
GCSE
COMBINED SCIENCE: TRILOGY
Higher Tier
Chemistry Paper 2H
8464/C/2H
Wednesday 12 June 2019 Morning
Time allowed: 1 hour 15 minutes
For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

| 0 | 1 |
| :--- | :--- | Water that is safe to drink contains dissolved substances.

\section*{| 0 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | What do we call water that is safe to drink? | | [1 mark]}

Tick (\checkmark) ONE box.

Desalinated

Filtered

Fresh

Potable

0	1	.2

Give the result of the test if the water is pure. [2 marks]

Test \qquad
\qquad
Result
\qquad
\qquad
[Turn over]

| 0 | 1 | 3 |
| :--- | :--- | :--- | dissolved solids in a $100 \mathrm{~cm}^{3}$ sample of river water. [4 marks]

\qquad
[Turn over]

0	1	.4
A sample of river water contains 125 mg		

Calculate the mass of dissolved solids in grams in $250 \mathrm{~cm}^{3}$ of this sample of river water.

Give your answer to 2 significant figures. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mass of dissolved solids = \qquad g

| 0 | 1 | 5 |
| :--- | :--- | :--- | A water company allows a maximum of 500 mg per dm^{3} of sulfate ions in drinking water.

A sample of drinking water contains 44 mg per dm^{3} of sulfate ions.

Calculate the percentage (\%) of the maximum allowed mass of sulfate ions in the sample of drinking water. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Percentage (\%) of the maximum allowed mass =
\qquad
\%

BLANK PAGE

| 0 | 2 |
| :--- | :--- |\quad This question is about atmospheric pollutants from fuels.

0	2	1

Describe how oxides of nitrogen are produced in a car engine. [2 marks]

[Turn over]

TABLE 1 shows the carbon footprint during the manufacture and use of three cars.

N
N
0

| Car | Mass of CO_{2}
 produced during
 manufacture in
 kg | Mass of CO_{2}
 produced when
 driving
 in kg per km | Total mass of
 CO produced |
| :--- | :--- | :--- | :--- | :--- |
| from | | | |
| manufacture and | | | |
| 40000 km | | | |
| driving in kg | | | |\(~\left(\begin{array}{l}Total mass of

CO 2 produced

from

manufacture and

100000 \mathrm{~km}

driving in kg\end{array}\right]\)
Evaluate the carbon footprint of the cars.
Use information from TABLE 1. [6 marks]

[Turn over]
[Turn over]

| 0 | 3 | This question is about chromatography of food |
| :--- | :--- | :--- | colouring.

| 0 | 3 | 1 |
| :--- | :--- | :--- | What is a formulation? [1 mark]

\qquad
\qquad

| 0 | 3 | .2 |
| :--- | :--- | :--- | the dyes in a food colouring.

Do NOT give details of how to do the experiment. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | 3 |
| :--- | :--- | :--- | chromatogram that the food colouring contained more than one dye. [2 marks]

[Turn over]

| 0 | 3 | .4 |
| :--- | :--- | :--- | chromatography to identify unknown dyes in the food colouring. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad

0	4	This question is about copper and fuels.

| 0 | 4 | .1 |
| :--- | :--- | :--- | phytomining.

Describe how copper metal is produced by phytomining. [4 marks]
\qquad
[Turn over]

\section*{| 0 | 4 | .2 |
| :--- | :--- | :--- |
| 2 | Another method of extracting copper from | |} low-grade ores is bioleaching.

A solution of copper sulfate $\left(\mathrm{CuSO}_{4}\right)$ produced by bioleaching has a concentration of $0.319 \mathrm{~g} / \mathrm{dm}^{3}$

Relative atomic masses $\left(A_{r}\right)$:
$\mathrm{Cu}=63.5 \quad \mathrm{O}=16 \quad \mathrm{~S}=32$
Calculate the number of moles of copper that can be produced from $1 \mathrm{dm}^{3}$ of this solution. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Number of moles of copper =

BLANK PAGE

[Turn over]

Copper is used as a catalyst.
FIGURE 1 shows reaction profiles for a reaction with and without a catalyst.

FIGURE 1

Progress of reaction \rightarrow

| 0 | 4 | 3 |
| :--- | :--- | :--- | catalyst does NOT affect the overall energy change for the reaction? [1 mark]

Tick (\checkmark) ONE box.

Both reaction profiles show exothermic reactions.

Both reaction profiles start at the same energy level and end at the same energy level.

Both reaction profiles show the activation energy.

The activation energy for the uncatalysed reaction is much lower than for the catalysed reaction.
[Turn over]

| 0 | 4 | 4 |
| :--- | :--- | :--- | Copper is a catalyst in a reaction to produce ethanol from carbon dioxide.

Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is used as a fuel.
Suggest why producing ethanol from carbon dioxide is sustainable. [2 marks]
\qquad
\qquad
\qquad

| 0 | 4 | .5 |
| :--- | :--- | :--- | Chemistry plays an important role in sustainable development.

What is sustainable development? [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad | |
| --- |

[Turn over]

| 0 | 5 |
| :--- | :--- |\quad This question is about magnesium.

A student investigated the rate of the reaction between magnesium and hydrochloric acid.

FIGURE 2 shows the apparatus.
FIGURE 2

0.5 .1 Which is the correct ionic equation for the reaction? [1 mark]

Tick (\checkmark) ONE box.

| 0 | 5 | 2 |
| :--- | :--- | :--- | What happens in the reaction between magnesium and hydrochloric acid? [1 mark]

Tick (\checkmark) ONE box.

Electron sharing

Electron transfer

Proton transfer
[Turn over]

| 0 | 5 | .3 |
| :--- | :--- | :--- | TABLE 2

Time in seconds	0	10	35	50	95	120	140
Volume of gas in cm^{3}	0.0	12.5	36.0	43.5	59.0	60.0	60.0

Plot the data from TABLE 2 on FIGURE 3, on the opposite page.

Draw a line of best fit. [3 marks]

| 0 | 5 | .4 Describe the changes in the rate of this |
| :--- | :--- | :--- | reaction. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FIGURE 3
Volume
of gas
in $\mathbf{c m}^{3}$

BLANK PAGE

| 0 | 5 | 5 |
| :--- | :--- | :--- | Explain why the rate of this reaction changes. Give your answer in terms of collision theory. [3 marks]

\qquad
\qquad
\qquad

0	6
This question is about oxygen $\left(\mathrm{O}_{2}\right)$ and	
sulfur dioxide $\left(\mathrm{SO}_{2}\right)$.	

| 0 | 6.1 | Give the test and result for oxygen gas. |
| :--- | :--- | :--- | [2 marks]

Test

Result

| 0 | 6 | 2 |
| :--- | :--- | :--- | sulfur dioxide is at equilibrium.

$$
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Some of the sulfur trioxide $\left(\mathrm{SO}_{3}\right)$ is removed.
Explain what happens to the position of the equilibrium. [2 marks]

[Turn over]

0	6	.3

Sulfur dioxide pollution is reduced by reacting calcium oxide with sulfur dioxide to produce calcium sulfite.
$\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3}$
7.00 g of calcium oxide reacts with an excess of sulfur dioxide.

Relative atomic masses $\left(A_{r}\right)$:
$0=16 \quad \mathrm{~S}=32 \quad \mathrm{Ca}=40$
Calculate the mass of calcium sulfite produced. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mass of calcium sulfite produced $=$
g

| 0 | 7 | This question is about hydrocarbons and |
| :--- | :--- | :--- | crude oil.

0	7	1
1	$H y d r o c a r b o n ~ f u e l s ~ a r e ~ p r o d u c e d ~ f r o m ~ c r u d e ~ o i l . ~$	

Describe how crude oil is separated into fractions. [4 marks]
\qquad

Butane is a hydrocarbon.

| 0 | 7. | 2 |
| :--- | :--- | :--- | Two equations for the combustion of butane are:

- $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
- $2 \mathrm{C}_{4} \mathrm{H}_{10}+5 \mathrm{O}_{2} \rightarrow 8 \mathrm{C}+10 \mathrm{H}_{2} \mathrm{O}$

Why are different products formed? [1 mark]
\qquad
\qquad
\qquad
\qquad

| 0 | 7. | 3 | One other product of the combustion of butane |
| :--- | :--- | :--- | :--- | is carbon monoxide.

Balance the equation. [1 mark]
\qquad $\mathrm{C}_{4} \mathrm{H}$
$\mathrm{ver}]$
[Turn over]

38

| 0 | 7 | 4 |
| :--- | :--- | :--- | Carbon dioxide is a greenhouse gas.

> Describe the greenhouse effect in terms of the interaction of short and long wavelength radiation with matter. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

