AQA

Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
GCSE
COMBINED SCIENCE: TRILOGY
Higher Tier
Physics Paper 1H 8464/P/1H

Wednesday 23 May 2018 Afternoon Time allowed: 1 hour 15 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

| 0 | 1 | FIGURE 1 shows two models of the |
| :--- | :--- | :--- | atom.

FIGURE 1
Plum pudding model

Nuclear model

\qquad
||IIIIIIII

0	1	1
1		

Choose the answers from the list. [4 marks]

atom
electron
nucleus
neutron
orbit
proton

0	1	2
2	Explain why the total positive	

[Turn over]

001 . 3 The results from the alpha particle scattering experiment led to the nuclear model.

Alpha particles were fired at a thin film of gold at a speed of 7\% of the speed of light.

Determine the speed of the alpha particles.

Speed of light $=300000000 \mathrm{~m} / \mathrm{s}$
[2 marks]

Speed =
m/s

BLANK PAGE

[Turn over]

01 . 4 FIGURE 2 shows two atoms represented as solid spheres.

FIGURE 2

Magnesium

9
A hydrogen atom has a radius of $2.5 \times 10^{-11} \mathrm{~m}$

Determine the radius of a magnesium atom. [2 marks]

Take the radius of the atoms as measured on FIGURE 2 to be:
Hydrogen atom 6 mm
Magnesium atom 36 mm

Radius =

[Turn over]

| 0 | 2 | A student wanted to determine |
| :--- | :--- | :--- | the density of the irregular shaped object shown in FIGURE 3

FIGURE 3

0.2. 1 Plan an experiment that would allow the student to determine the density of the object.
[6 marks]
\qquad
\qquad

11

[Turn over]

0 2. 2 Another student did a similar experiment.
He determined the density of five common plastic materials.

TABLE 1 shows the results.
TABLE 1

Plastic material	Density in kg/m3
Acrylic	1200
Nylon	1000
Polyester	1380
Polystyrene	1040
PVC	1100

BLANK PAGE

[Turn over]
$\stackrel{\rightharpoonup}{\omega}$

FIGURE 4, on page 15, shows the results plotted in a bar chart.

Complete FIGURE 4
You should:

- Write the correct scale on the y-axis.
- Draw the bars for polyester, polystyrene and PVC. [4 marks]

FIGURE 4

Density
in $\mathrm{kg} / \mathrm{m}^{3}$

[Turn over]

0.2 . 3 The student is given a piece of a different plastic material.

The student determined the density of the material three times.

TABLE 2 shows the results.

TABLE 2

	Density in $\mathrm{kg} / \mathrm{m}^{3}$
1	960
2	1120
3	1040

17

Determine the uncertainty in the student's results. [2 marks]

Uncertainty =

 $\mathrm{kg} / \mathrm{m}^{3}$
[Turn over]

The diver is using a canister of compressed air so that he can breathe underwater.

FIGURE 5

Canister of compressed air

| 0 | 3. | 1 |
| :--- | :--- | :--- | the movement of the air particles in the canister? [2 marks]

Tick TWO boxes.

They vibrate about a fixed position.

They move in random directions.

The motion of all the particles is predictable.

They move with a range of different speeds.

They move in circular paths.
[Turn over]

20

BLANK PAGE

21

$0 \mid 3.2$ The temperature of the air inside the canister increases.

What happens to the movement of the air particles? [1 mark]

0 0. 3.3 It could be dangerous if the temperature of the air inside the canister increased by a large amount.

Explain why. [2 marks]
[Turn over]

22
A canister of air was tested to find out how the pressure changed when it was used by a diver.

- Air was allowed to escape from the canister.
- The pressure of the air in the canister was recorded every 5 minutes for 80 minutes.

FIGURE 6 shows the results.
FIGURE 6
Pressure in MPa
2.5
2.0
1.5
1.0
0.5

0
 Time in minutes

0 3. 4 Estimate the atmospheric pressure.

Use FIGURE 6 [1 mark]

Atmospheric pressure $=$
MPa
0|3. 5 Divers can safely stay
underwater until the pressure of the air in the canister has reduced to 25% of its original value.

Determine the maximum time the diver can safely stay underwater.

Use FIGURE 6 [3 marks]

Time =
minutes
[Turn over]

0 0. 3 . 6 What happens to the volume of the air when it is released from the canister? [1 mark]
\qquad
\qquad
$0 \mid 4$ The Chernobyl disaster was a nuclear accident that happened in 1986

Radioactive isotopes were released into the environment.

The radioactive isotopes emitted alpha, beta and gamma radiation.

25

4. 4 What is an alpha particle?
[1 mark]
Tick ONE box.

2 charged particles and 2 neutral particles.

2 charged particles and 4 neutral particles.

4 charged particles and 2 neutral particles.

4 charged particles and
4 neutral particles.
[Turn over]
0.4. 2 Which statement about beta radiation is true? [1 mark]

Tick ONE box.

It is the fastest moving type of radiation.

It is the type of radiation with a negative charge.

It is the type of radiation with the greatest mass.

It is the type of radiation with the greatest range in air.

27

0|4. 3 Which statement about gamma radiation is true? [1 mark]

Tick ONE box.

It is a low frequency
electromagnetic wave.
It causes the charge of the nucleus to change.

It causes the mass of the nucleus to change.

It has a very long range in air.
[Turn over]

28

TABLE 3 shows the half-lives of two of the radioactive isotopes that contaminated the environment.

TABLE 3

Isotope	Half-life
Caesium-137	30 years
lodine-131	8 days

0.4 .4 A soil sample was taken from the area around Chernobyl in 1986

The soil sample was
contaminated with equal amounts of caesium-137 and iodine-131

29
Explain how the risk linked to
each isotope has changed
between 1986 and 2018
Both isotopes emit the same type of radiation. [4 marks]

[Turn over]

30
BLANK PAGE

04 . 5 Determine the year when the activity of the caesium-137 in the soil sample will be $1 / 32$ of its original value. [3 marks]
\qquad
\qquad

Year $=$

[Turn over]

05 FIGURE 7 shows cavity wall insulation being installed in the wall of a house.

FIGURE 7

0 5. 1 Explain how the wall reduces unwanted energy transfers. [3 marks]
[Turn over]

0 0. 5 . 2 The cavity insulation was tested.

- The heating inside the house was switched off.
- The temperature inside the house was measured every 20 minutes for 2 hours.

TABLE 4 shows the results.
TABLE 4

Time in minutes	Temperature in $^{\circ} \mathrm{C}$
0	25.0
20	20.8
40	17.4
60	14.5
80	12.1
100	10.0
120	8.4

35

Determine the temperature inside the house after 30 minutes. [2 marks]

\qquad
\qquad
\qquad
\qquad

Temperature $=$

${ }^{\circ} \mathrm{C}$
[Turn over]

0.5 . 3 FIGURE 8 shows the gas boiler used to heat the house.

FIGURE 8

Describe how different energy stores are changed by the boiler. [3 marks]
\qquad
\qquad

| 0 | 5.4 | To heat the house, the boiler |
| :--- | :--- | :--- | transfers 15 MJ of energy in 10 minutes.

Calculate the power of the boiler.

Write any equation that you use. [4 marks]

Power =
W filament lamps.
0.6 .1 Sketch a current potential difference graph for a filament lamp on FIGURE 9 [2 marks]

FIGURE 9

FIGURE 10 shows the circuit with two identical filament lamps.

FIGURE 10

006 . 2 Compare the currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} [2 marks]
[Turn over]

40

BLANK PAGE

06 . 3 Calculate the charge that flows through the cell in 1 minute.

Each filament lamp has a power of 3 W and a resistance of 12Ω

Write any equations that you use. Give the unit. [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Charge = Unit =
[Turn over] circuit.

FIGURE 11 shows the circuit.
FIGURE 11

43

Explain how the readings on both meters change when the environmental conditions change. [6 marks]

[Turn over]

44

END OF QUESTIONS

45

There are no questions printed on this page

There are no questions printed on this page

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

IB/M/Jun18/NC/8464/P/1H/E4

