AQA

Surname

Other Names \qquad
Centre Number \qquad
Candidate Number \qquad
Candidate Signature
GCSE
COMBINED SCIENCE: TRILOGY
Foundation Tier
Physics Paper 2F
8464/P/2F
Friday 14 June 2019 Morning
Time allowed: 1 hour 15 minutes

For this paper you must have:

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

0	1	Magnetic force is a non-contact force.

| 0 | 1. | 1 |
| :--- | :--- | :--- | forces? [2 marks]

Tick (\checkmark) TWO boxes.

Air resistance

Electrostatic

Friction

Gravitational

Tension

\section*{| 0 | 1 |
| :--- | :--- | . 2 FIGURE 1 shows a bar magnet.}

FIGURE 1

A

B

\mathbf{N}	

Which letter shows the position where the magnetic field around the bar magnet is strongest? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D
[Turn over]

| 0 | 1 | 3 | When two magnets are brought close to each |
| :--- | :--- | :--- | :--- | other they exert a force on each other.

Describe how two bar magnets can be used to demonstrate a force of attraction and a force of repulsion. [2 marks]

Force of attraction \qquad
\qquad

Force of repulsion

FIGURE 2 shows some paper clips that are attracted to a permanent magnet.

FIGURE 2

\mathbf{S}	\mathbf{N}

| 0 | 1.4 | The paperclips become magnetised when |
| :--- | :--- | :--- | they are close to the permanent magnet.

What is the name of this type of magnetism? [1 mark]

Tick (\checkmark) ONE box.

Forced magnetism

Induced magnetism

Strong magnetism

| 0 | 1. | 5 |
| :--- | :--- | :--- | magnetised paper clips in FIGURE 2, on the opposite page. [2 marks]

[Turn over]

| 0 | 2 |
| :--- | :--- | FIGURE 3 shows a gymnast on a piece of gymnastic equipment.

The equipment consists of two bars at different heights.

FIGURE 3

0	2	1
1		

What is the size of the upward force acting on the gymnast from the bar? [1 mark]

Tick (\checkmark) ONE box.

It is greater than the downward force.

It is less than the downward force.

It is the same size as the downward force.
[Turn over]

| 0 | 2 | 2 |
| :--- | :--- | :--- | by an arrow? [1 mark]

Tick (\checkmark) ONE box.

Weight is a constant.

Weight is a scalar.

Weight is a unit.

Weight is a vector.

| 0 | 2 | 3 |
| :--- | :--- | :--- | FIGURE 3 , on page 8 , shows the weight of the gymnast acting from a point.

What name is given to this point? [1 mark]
Tick (\checkmark) ONE box.

Centre of force

Centre of mass

Centre of tension

Centre of weight
[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">4</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 2 | 4 |
| :--- | :--- | :--- |</table-markdown></div>

 gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$Calculate the weight of the gymnast. Use the equation: weight $=$ mass \times gravitational field strength [2 marks]

Weight $=$ \qquad N

| 0 | 2 | 5 |
| :--- | :--- | :--- | The gymnast swings from one bar to the other bar several times.

Describe how the gravitational potential energy store and the kinetic energy store of the gymnast change as she moves between the bars. [4 marks]

[Turn over]

| 0 | 2 |
| :--- | :--- | :--- | Falling on the crash mat reduces the average deceleration of the gymnast compared with falling on a hard surface.

Explain why reducing the deceleration is important to the gymnast. [2 marks]
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

| 0 | 3 | FIGURE 4 shows two children playing table |
| :--- | :--- | :--- | tennis.

The boy hits the ball from one end of the table.

FIGURE 4

| 0 | 3 | 1 |
| :--- | :--- | :--- | Why does the velocity of the ball change when the boy hits it? [1 mark]

Tick (\checkmark) ONE box.

The direction of the ball does not change.

There is a resultant force on the ball.

The mass of the ball increases.

The speed of the ball is constant.
[Turn over]

| 0 | 3. | 2 |
| :--- | :--- | :--- | The ball has an average speed of $11 \mathrm{~m} / \mathrm{s}$

The ball takes 0.25 s to travel the same distance as the length of the table.

Calculate the length of the table.
Use the equation:
distance travelled $=$ speed \times time
[2 marks]
\qquad
\qquad

Length of table = m

BLANK PAGE

[Turn over]

| 0 | 3 | 3 |
| :--- | :--- | :--- | A table tennis ball should only be used if it bounces to at least 75% of the height it was dropped from.

A manufacturer tested a table tennis ball.
TABLE 1 shows the results.

TABLE 1

Height ball was dropped from in cm	Height of bounce in cm
30.0	25.1

Determine whether the ball can be used.
Use the data from TABLE 1. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 3 | 4 |
| :--- | :--- | :--- | FIGURE 5 shows two table tennis balls.

The balls are different sizes but have the same mass.

FIGURE 5

Both balls were dropped onto the table from the same height.

After they were dropped, the resultant force on the smaller ball was greater than the resultant force on the larger ball.

Explain why. [2 marks]
\qquad
\qquad

| 0 | 4 | The thinking distance of a car depends on the |
| :--- | :--- | :--- | reaction time of the driver.

FIGURE 6 shows how thinking distance varies with reaction time for a car travelling at $30 \mathrm{~m} / \mathrm{s}$

FIGURE 6

> Reaction time in milliseconds

| 0 | 4 | 1 |
| :--- | :--- | :--- | driver is distracted.

Explain the effect doubling the reaction time has on the thinking distance.

Use data from FIGURE 6. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

0	4	.2
Give the reason why there are no values of		

[Turn over]

A driver measured her reaction time using an online test. She did the test five times.

TABLE 2 shows the results.

TABLE 2

Reaction time in milliseconds				
258	265	302	248	327

0	4	3
How does the data in TABLE 2 show that it		

\qquad
\qquad
\qquad

0	4	4
Calculate the mean reaction time of the driver.		

\qquad
\qquad
\qquad
\qquad
\qquad

Mean reaction time $=$ ms

0	4	F The driver is driving her car at $\mathbf{3 0} \mathrm{m} / \mathrm{s} \mathrm{s}$

Determine the thinking distance.
Use FIGURE 6, on page 24, and your answer from Question 04.4 [1 mark]

Thinking distance $=$ m
[Turn over]

28

 comes to a stop.

The force exerted by the brakes affects the braking distance.

Give TWO other factors that affect the braking distance. [2 marks]

1
1
\qquad
2 \qquad

0	4	7
7	Write down the equation that links distance,	

\qquad
\qquad

0	4	8
8		

The car travels a distance of 75 m before stopping.

Calculate the work done in stopping the car. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Work done $=\ldots \mathrm{J}$
[Turn over]

The Sun emits all types of electromagnetic waves.
FIGURE 7 shows the electromagnetic spectrum.
015

015
FIGURE 7

Radio waves	Microwaves	Infrared	Visible light	Ultraviolet	X-rays	Gamma rays

- frequency
- mass
- power
- velocity
- wavelength

[Turn over]

BLANK PAGE

0	5.	2
Explain why it is important that the Earth's		

\qquad
\qquad
\qquad
\qquad

| 0 | 5 | 3 |
| :--- | :--- | :--- | Earth's atmosphere.

Why is this useful? [1 mark]
[Turn over]

FIGURE 8

UV index
 Month

Some ultraviolet (UV) radiation from the Sun passes through the atmosphere and reaches the surface of the Earth.

The amount of UV radiation that reaches the surface of the Earth can be measured on a scale called the UV index.

FIGURE 8, on page 34, shows the average midday UV index in the UK for 1 year.

0	5.	4
Why is exposure to UV radiation harmful to		

[Turn over]

BLANK PAGE

0	5.	5
Compare the risk from UV radiation at		

Use data from FIGURE 8, on page 34. [2 marks]
\qquad
\qquad
[Turn over]

| 0 | 6 | FIGURE 9 shows a runner using a smart |
| :--- | :--- | :--- | watch and a mobile phone to monitor her run.

FIGURE 9

BLANK PAGE

[Turn over]

FIGURE 10 is a velocity-time graph for part of the runner's warm-up.

FIGURE 10
Velocity in m / s

Time in seconds

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">6.1</td>
<td style="text-align: left; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Determine the total time for which the velocity</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 6.1 | Determine the total time for which the velocity |
| :--- | :--- | :--- |</table-markdown></div> of the runner was increasing. [2 marks]

\qquad
\qquad

Time $=$ \qquad s

| 0 | 6 | 2 |
| :--- | :--- | :--- | [2 marks]

\qquad
\qquad
\qquad
\qquad

Deceleration $=$
$\mathrm{m} / \mathrm{s}^{2}$

[Turn over]

The smart watch and mobile phone are connected to each other by a system called Bluetooth.

Bluetooth is wireless and uses electromagnetic waves for communication.

| 0 | 6. | 3 |
| :--- | :--- | :--- | connected by a wireless system is an advantage when running. [1 mark]

| 0 | 6.4 | Write down the equation that links frequency, |
| :--- | :--- | :--- | wave speed and wavelength. [1 mark]

0.6 .5 The electromagnetic waves have a frequency
of 2400000000 Hz

The speed of electromagnetic waves is $300000000 \mathrm{~m} / \mathrm{s}$

Calculate the wavelength of the electromagnetic waves. [3 marks]
\qquad
\qquad
\qquad
\qquad

| 0 | 6.6 |
| :--- | :--- | :--- | TABLE 3 shows some information about four types of Bluetooth.

TABLE 3

Type	Power in milliwatts	Range in metres
1	100	100
2	2.50	10.0
3	1.00	1.00
4	0.50	0.50

Mobile phones use type 2 Bluetooth to communicate with other devices.

Suggest TWO reasons why. [2 marks]

1 \qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

| 0 | 7 | FIGURE 11 shows the equipment a teacher |
| :--- | :--- | :--- | used to determine the speed of a water wave.

The equipment includes:

- a ripple tank filled with water
- a wooden bar that creates ripples on the surface of the water
- a light source which causes a shadow of the ripples on the screen.

FIGURE 11

Wooden bar supported by elastic bands

| 0 | 7 | 1 Describe how equipment in FIGURE 11 can be |
| :--- | :--- | :--- | used to measure the wavelength, frequency and speed of a water wave. [6 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

The teacher put a plastic duck in the ripple tank as shown in FIGURE 12.

The plastic duck moved up and down as the waves in the water passed.

FIGURE 12

| 0 | 7 . 2 How does the movement of the plastic duck in |
| :--- | :--- | FIGURE 12 demonstrate that water waves are transverse? [1 mark]

[Turn over]

| 0 | 7 | 3 |
| :--- | :--- | :--- | and the minimum height of the plastic duck above the screen as the wave passed.

The teacher repeated his measurements.
TABLE 4 shows the teacher's measurements.

TABLE 4

Maximum height in mm	509	513	511
Minimum height in mm	503	498	499

Calculate the mean amplitude of the water wave. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mean amplitude = mm

END OF QUESTIONS

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

