A
AQAE

Surname \qquad
Other Names \qquad
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.

GCSE
 COMBINED SCIENCE: TRILOGY

Foundation Tier
Physics Paper 2F
8464/P/2F

Friday 12 June 2020
Morning
Time allowed: 1 hour 15 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

| 0 | 1 |
| :--- | :--- | FIGURE 1 shows a girl bowling a ball along a ten-pin bowling lane.

FIGURE 1

The girl is trying to knock down the ten pins at the end of the bowling lane.

As the ball travels along the lane the velocity of the ball decreases.

\section*{| 0 | 1.1 |
| :--- | :--- | :--- |}

Which statement describes a vector? [1 mark]
Tick (\checkmark) ONE box.

Vectors have direction only.

Vectors have magnitude and direction.

Vectors have magnitude only.

| 0 | 1. | 2 |
| :--- | :--- | :--- | Why does the velocity of the ball decrease as the ball travels along the lane? [1 mark]

Tick (\checkmark) ONE box.

The force of gravity slows the ball down.

There are no forces acting on the ball.

There is a resultant force acting on the ball.
[Turn over]

| 0 | 1. | 3 |
| :--- | :--- | :--- | speed of $4.5 \mathrm{~m} / \mathrm{s}$

It takes the ball 4.0 seconds to travel the length of the lane.

Calculate the length of the lane.
Use the equation:
distance travelled $=$ speed \times time
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Length of the lane $=$ m

FIGURE 2 shows the ball hitting one of the pins.

FIGURE 2

| 0 | 1.4 | Draw an arrow on FIGURE 2 to show the force |
| :--- | :--- | :--- | of the pin on the ball. [2 marks]

[Turn over]

| 0 | 1.5 | The velocity of the pin changes from |
| :--- | :--- | :--- | 0 to $12 \mathrm{~m} / \mathrm{s}$

It takes 0.15 seconds for the velocity to change.

Calculate the acceleration of the pin.
Use the equation:
acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$
[2 marks]
\qquad
\qquad
\qquad

Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{\mathbf{2}}$
011.6 When the pin is struck it accelerates.

Complete the sentences.
Choose answers from the list.
Each answer can be used once, more than once, or not at all. [3 marks]

- decreases
- increases
- stays the same

The displacement of the pin from the girl
\qquad -

The mass of the pin \qquad -

The kinetic energy of the pin
\qquad -

0	2	FIGURE 3 shows a computer keyboard.

There is a spring under each key.
FIGURE 3

| 0 | 2. | 1 |
| :--- | :--- | :--- | Why do the keys have springs under them? [1 mark]

Tick (\checkmark) ONE box.

Springs make the keys easier to press.

Springs make the keys lighter.

| 0 | 2 | 2 |
| :--- | :--- | :--- |${ }^{2}$ Why does every spring used in the keyboard have the same spring constant? [1 mark]

Tick (\downarrow) ONE box.

So that more than one key can be pressed at the same time.

So that the same force is needed to press each key.

So that the springs are all the same length.
[Turn over]

FIGURE 4 shows one of the keys and its spring.

FIGURE 4

| 0 | 2 | 3 |
| :--- | :--- | :--- | What happens to the length of the spring when the key is pressed? [1 mark]

\qquad
\qquad

0	2	4
4		

Tick (\checkmark) ONE box.

4.0 mm

4.0 cm

$4.0 \mu \mathrm{~m}$

0	2	5
5		

Explain why. [2 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

REPEAT OF FIGURE 4

| 0 | 2 | 6 |
| :--- | :--- | :--- | The spring in FIGURE 4 has a spring constant of $200 \mathrm{~N} / \mathrm{m}$

Calculate the force on the spring when the key moves a distance of 0.0040 m

Use the equation:
force $=$ spring constant \times compression
[2 marks]
\qquad
\qquad

Force $=\longrightarrow \mathbf{N}$

0	2	7
7	Suggest TWO ways the spring in the key in	

1 \qquad
\qquad
\qquad
2 \qquad
\qquad
[Turn over]

0	3	X
-rays and gamma rays are types of		

X-rays are used for medical imaging.

0	3	1
1		

Tick (\checkmark) ONE box.

Bone

Metal

Skin

TABLE 1 shows the effect of exposure to different doses of radiation.

TABLE 1

Dose in mSv	Effect on the human body
100	slightly increased risk of cancer
1000	5% increased risk of cancer
5000	high risk of death

0	3	2
During one X-ray a person receives a dose of		

Why is this dose unlikely to harm the person? [1 mark]
\qquad
\qquad

| 0 | 3 | .3 A doctor takes an X-ray photograph of a |
| :--- | :--- | :--- | person.

When taking the X-ray photograph, the doctor stands behind a screen.

Suggest why. [1 mark]
\qquad
\qquad
[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">3.4</td>
<td style="text-align: left; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Which of the following are gamma rays used</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 3.4 | Which of the following are gamma rays used |
| :--- | :--- | :--- |</table-markdown></div> for? [1 mark]

Tick (\checkmark) ONE box.

Cooking food

Energy-efficient lamps

Sterilising medical equipment

\section*{| 0 | 3. | 5 Why are gamma rays and X-rays harmful to |
| :--- | :--- | :--- | humans? [1 mark]}

Tick (\checkmark) ONE box.

They are ionising

They are radioactive

They travel at the speed of light

| 0 | 3 | 6 |
| :--- | :--- | :--- | Electromagnetic waves are also used in communications.

Describe how microwaves and visible light are used in communications. [4 marks]

Microwaves
\qquad
\qquad
\qquad
\qquad
\qquad
Visible light
\qquad
\qquad
\qquad

074 FIGURE 5 shows a distance-time graph for 50 seconds of a bicycle ride.

FIGURE 5
Distance
in metres

004 . 1 The gradient of the distance-time graph gives the speed of the bicycle.

Determine the speed of the bicycle. [2 marks]
\qquad
\qquad
\qquad
\qquad

Speed $=$
m/s
[Turn over]

04 . 2 Which force acting on the moving bicycle is a non-contact force? [1 mark]

Tick (\checkmark) ONE box.

Air resistance

Friction

Gravitational force

Normal contact force

23

| 0 | 4 | .3 |
| :--- | :--- | :--- |${ }^{3}$ The bicycle travels a distance of $\mathbf{2 5 0} \mathbf{m}$

The bicycle exerts a constant horizontal force of 30 N on the ground.

Calculate the work done.
Use the equation:
work done $=$ force \times distance
Choose the unit from the list. [3 marks]

- J
- kg
- m
\qquad
\qquad
\qquad

Work done =
Unit
[Turn over]

0	4.4

Complete the sentences.
Choose answers from the list. [3 marks]

- chemical
- frictional
- kinetic
- magnetic
- tension

As the bicycle moves, work is done against forces.

There is no change in the cyclist's
\qquad
There is a decrease in the cyclist's
store of energy.
$\boxed{9}$

BLANK PAGE

[Turn over]
$|||||||||||||||||||||||||\mid$

\section*{| 0 | 5 | FIGURE 6 shows four waves. |
| :--- | :--- | :--- |}

The waves are drawn to the same scale.
FIGURE 6

A
B

C

D

\section*{| 0 | 5. |
| :--- | :--- | :--- | [1 mark]}

Tick (\checkmark) ONE box.

A

B

C

D
[Turn over]

REPEAT OF FIGURE 6

$0 \mid 5$. 2 Which wave has the greatest frequency? [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D

\section*{| 0 | 5 | 3 |
| :--- | :--- | :--- |} [1 mark]

Tick (\checkmark) ONE box.

A

B

C

D
[Turn over]

0	5.4
A wave has a frequency of 1650 Hz and a	

Calculate the wave speed.
Use the equation:
wave speed $=$ frequency \times wavelength
[2 marks]
\qquad
\qquad
\qquad
\qquad

Wave speed = m / s

BLANK PAGE

[Turn over]

A student uses a mobile phone app that displays sound waves.

FIGURE 7 shows the student holding the mobile phone close to a loudspeaker.

FIGURE 7

FIGURE 8 shows the wave pattern seen on the phone screen.

FIGURE 8

Displacement

0.5 . 5 What is the period of the wave shown in

 FIGURE 8? [1 mark]Tick (\checkmark) ONE box.

$$
0.002 \mathrm{~s}
$$

0.004 s

0.006 s

0.008 s
[Turn over]

REPEAT OF FIGURE 8

Displacement

| 0 | 5 | 6 | Determine the frequency of the wave shown in |
| :--- | :--- | :--- | :--- | FIGURE 8.

Use the Physics Equations Sheet. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Frequency = Hz
[Turn over]
$\boxed{9}$

06 FIGURE 9 shows five different metal samples.

FIGURE 9

Iron

Steel

Aluminium

Copper

Tin

| 0 | 6.1 | A student placed a magnet close to each |
| :--- | :--- | :--- | metal sample.

Describe what happened. [2 marks]
\qquad
\qquad
\qquad
\qquad

FIGURE 10 shows a paper clip being attracted to a permanent magnet.

FIGURE 10

| 0 | 6.2 |
| :--- | :--- | :--- | permanent magnet.

Explain what would happen if the paper clip was removed and brought close to the south pole of the permanent magnet. [2 marks]
\qquad
\qquad
\qquad
[Turn over]

| 0 | 6 | .3 |
| :--- | :--- | :--- |${ }^{3}$ Write down the equation that links gravitational field strength (g), mass (m) and weight (W). [1 mark]

\qquad

| 0 | 6 | 4 The student added more paperclips to one |
| :--- | :--- | :--- | end of the magnet.

The maximum number of paperclips the magnet could hold was 20

Each paper clip had a mass of 1.0 g
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the maximum force the magnet can exert. [3 marks]
\qquad
\qquad
\qquad

Force $=$ N

[Turn over]
$\boxed{\square}$

| 0 | 7 | A student investigated how the height of a |
| :--- | :--- | :--- | ramp affects the acceleration of a trolley down the ramp.

FIGURE 11 shows some of the equipment used.
FIGURE 11

0 7. 1 Plan an investigation to determine how the height of the ramp affects the acceleration of the trolley. [6 marks]
\qquad
\qquad
\qquad
\qquad

[Turn over]

TABLE 2 shows the results.

TABLE 2

Height of ramp in metres	0.1	0.2	0.3	0.4	0.5	0.6
Acceleration in $\mathrm{m} / \mathrm{s}^{2}$	0.9	1.3	2.1	3.2	3.9	4.3

The first two results have been plotted on FIGURE 12, on the opposite page.

0	7.2	Complete FIGURE 12, on the opposite page.

You should:

- label the axes
- plot the remaining results from TABLE 2
- draw a line of best fit.
[4 marks]

FIGURE 12

[Turn over]

| 0 | 7. | 3 |
| :--- | :--- | :--- | acceleration (a), mass (m) and resultant force (F). [1 mark]

| 0 | 7.4 | When the resultant force on the trolley was |
| :--- | :--- | :--- | 0.63 N the acceleration of the trolley was 2.1 m/s ${ }^{2}$

Calculate the mass of the trolley. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mass of trolley =

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

\qquad

	Additional page, if required.
Write the question numbers in the left-hand margin.	

\qquad

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/NC/Jun20/8464/P/2F/E2

