AQA

Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
GCSE
COMBINED SCIENCE: TRILOGY
Foundation Tier
Physics Paper 2F
8464/P/2F
Friday 15 June 2018 Morning
Time allowed: 1 hour 15 minutes

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 70 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

4

| 0 | 1 | 1 |
| :--- | :--- | :--- | Which of these is a scalar quantity? [1 mark]

Tick ONE box. displacement

distance

force

5

BLANK PAGE

[Turn over]

FIGURE 1

0	1.2
A woman cycled along a straight	

FIGURE 1, on the opposite page, shows how the woman's velocity changed with time.

Which part of the graph shows the woman moving at constant velocity? [1 mark]

Tick ONE box.

| 0 | 1 | 3 |
| :--- | :--- | :--- | the woman stationary? [1 mark]

Tick ONE box.

[Turn over]

8

Between points A and B the woman was accelerating.

\section*{| 0 | 1.4 | 4 |
| :--- | :--- | :--- |
| Use FIGURE 1 | | | to determine the total time for which she was accelerating. [1 mark]}

Time $=$

[Turn over]

9

| 0 | 1. | 5 |
| :--- | :--- | :--- | increase in velocity between points A and B. [1 mark]

Increase in
 velocity =

 m / s| 0 | 1 | 6 |
| :--- | :--- | :--- | between points A and B.

Use the equation:
acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$
[2 marks]

Acceleration =

$\mathrm{m} / \mathrm{s}^{2}$
[Turn over]
||IIIIIIIIIIII

0 1. 7 Estimate how a typical cycling

 speed of $6 \mathrm{~m} / \mathrm{s}$ compares with a typical walking speed. [1 mark]Tick ONE box.

about twice as fast

about four times faster
about eight times faster

BLANK PAGE

[Turn over]

| 0 | 2 | FIGURE 2 shows a slinky spring used to model a |
| :--- | :--- | :--- | sound wave.

FIGURE 2

$\stackrel{\rightharpoonup}{N}$

13

0	2	1
Label the arrows on FIGURE 2		

Choose the answers from the list. [3 marks]
amplitude compression
frequency
rarefaction
wavelength
[Turn over]

14

| 0 | 2 | 2 |
| :--- | :--- | :--- | wave? [1 mark]

Tick ONE box.

electromagnetic

Iongitudinal
transverse

BLANK PAGE

[Turn over]

0.2 . 3 FIGURE 3 shows two students measuring the speed of sound in air.

FIGURE 3

Stopwatch

One student bangs two bricks together.

The sound wave produced is reflected from the wall and travels back to the students.

17

Describe how they can determine the speed of sound. [4 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

03 FIGURE 4 shows a man doing two stages of a pull up. In both diagrams the man is stationary.

FIGURE 4

Stage 1
Stage 2

\section*{| 0 | 3 | 1 |
| :--- | :--- | :--- |
| 1 | Complete the sentence. | |}

Choose the answer from the list. [1 mark]

equal to
less than
more than

In stage 1 the downwards force of the man on the bar is

the upwards force of the bar on the man.

[Turn over]

20

0 0. 3.2 The man has a mass of 85 kg

Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the weight of the man.
Use the equation:
weight $=$ mass \times gravitational field strength [2 marks]

Weight $=$

21

0 0 3 . 3 The man raises his body a vertical distance of 0.63 m to go from stage 1 to stage 2 Calculate the work done by the man.

Use your answer to question 03.2
Use the equation:
work done $=$ force \times distance [2 marks]

Work done =
[Turn over]

22

0 3. 4 The man was NOT moving at stage 2
How much work is done by the man at stage 2? [1 mark]

Work done $=\ldots \mathrm{J}$

23

0|3. 5 A woman uses the bar to do a pull up.

The woman has a mass of $\mathbf{6 2} \mathbf{~ k g}$
She accelerates at $\mathbf{1 1} \mathbf{~ m} / \mathrm{s}^{2}$
Calculate the resultant force on the woman.

Use the equation:
force $=$ mass \times acceleration
[2 marks]

Force $=$
N

[Turn over]

24

04 FIGURE 5 shows types of waves within the electromagnetic spectrum.

Some of the types of waves are represented by letters.

FIGURE 5

P microwaves Q visible $R \quad S \quad$ gamma light rays

04 . 1 Which letter shows the position of ultraviolet (UV) radiation within the electromagnetic spectrum? [1 mark]

Tick ONE box.

25

0.4. 2 A special lamp can produce UV radiation.

Which TWO statements describe the electromagnetic waves emitted by a UV lamp? [2 marks]

Tick TWO boxes.

They have a higher frequency than X-rays.

They have the same wave speed as visible light.

They have a longer wavelength than microwaves.

They have a lower frequency than gamma rays.

They have a greater wave speed than radio waves.

26

04 . 3 UV radiation is used to treat a vitamin D deficiency.

People should NOT use a UV lamp for long periods of time.

State TWO risks of exposure to high levels of UV radiation.
[2 marks]

1

2
2
\qquad

27

04 . 4 lonising radiation is used for some medical imaging.

Name TWO types of electromagnetic waves that are used. [2 marks]

1

2
\qquad
[Turn over]
7

28

05 FIGURE 6 shows a man using a resistance band when exercising.

The resistance band behaves elastically.
FIGURE 6

05. 1 What happens to the store of elastic potential energy of the resistance band when the band is stretched? [1 mark]
\qquad

29
05. 2 Explain what happens to the resistance band as it is released. [2 marks]

[Turn over]

05 . 3 FIGURE 7 shows how the extension of the resistance band changes as the force applied changes.

FIGURE 7

Extension

Force

Describe the trend shown in the graph. [2 marks]

[Turn over]

FIGURE 8 shows a chest expander.

FIGURE 8

05.4 Sketch a graph on FIGURE 9 to show how the extension of a spring in the chest expander changes as the force applied changes.
[2 marks]
FIGURE 9
Extension

[Turn over]

When a force is applied to a spring, the spring extends by 7.5 cm

0.5 .5 Write down the equation that links extension, force and spring constant. [1 mark]

05 . 6 Calculate the force applied to the spring.

The spring has a spring constant of 1600 N/m

Use your equation from question 05.5 [3 marks]
\qquad
\qquad

Force $=$

0 [6] FIGURE 10 shows a lorry.

FIGURE 10

06. 1 The brakes of the lorry are in a poor condition.

What effect will the condition of the brakes have on thinking distance and the braking distance of the lorry? [2 marks]
Thinking distance

Braking distance

[Turn over]

0]6. 2 Using a hand-held mobile phone while driving is illegal in the United Kingdom.

TABLE 1 shows the effect of using a mobile phone on thinking distance.

TABLE 1

	Thinking distance
Not using a mobile phone	19 m
Using a mobile phone with hands-free kit	23 m
Using a hand-held mobile phone	27 m

Explain why driving while using a hand-held mobile phone is more dangerous than using a mobile phone with a hands-free kit.

Use data from TABLE 1 [4 marks]

39
0.7 A student investigated acceleration using gliders, an air track and light gates.

The air track reduces friction between the glider and the track to zero.

FIGURE 11 shows the apparatus.
FIGURE 11
Glider

41

The glider was released from rest and moved along the track.

The mass holder hit the ground before the card passed through the second light gate.

| 0 | 7. | 1 |
| :--- | :--- | :--- | the effect this would have on the glider? [2 marks]

Tick TWO boxes.

Its acceleration would decrease to zero.

Its acceleration would increase.

The resultant force on it would decrease to zero.

The resultant force on it would increase.

Its speed would increase.
[Turn over]

0 7. 2 The mass holder should NOT hit the ground before the card passes through the second light gate.

Suggest ONE way that the student could stop this happening. [1 mark]

The student increased the resultant force acting on the glider by adding more masses to the mass holder.

She calculated the acceleration of the glider for each resultant force.

Each test was done three times.
TABLE 2 shows the results.

TABLE 2

Resultant force in N	Acceleration in $\mathrm{m} / \mathrm{s}^{2}$			Mean acceleration in m/s
	Test 1	Test 2	Test 3	
	1.3	1.2	1.3	1.26667
0.39	2.6	2.5	2.6	2.6
0.59	3.8	3.8	3.9	3.8
0.78	5.1	5.1	5.1	5.1
0.98	6.4	7.2	6.4	6.7

[Turn over]

44

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">3 The student made TWO mistakes</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 7. | 3 The student made TWO mistakes |
| :--- | :--- | :--- |</table-markdown></div> in the mean acceleration column.

Identify the mistakes the student made.

Suggest how each mistake can be corrected. [4 marks]

Mistake

Correction

Mistake

\qquad

45

Correction

\section*{| 0 | 7 | 4 |
| :--- | :--- | :--- |} investigation.

Use the data in TABLE 2, on page 43. [1 mark]

| 0 | 7. | 5 |
| :--- | :--- | :--- | The student used a constant resultant force to accelerate the glider.

The student changed the mass of the glider and calculated the new acceleration.

She repeated this for different masses of the glider, keeping the resultant force constant.

The results are shown in TABLE 3

TABLE 3

Mass of the glider in kg	Acceleration in $\mathrm{m} / \mathrm{s}^{2}$
0.060	3.5
0.080	2.6
0.10	2.0
0.12	1.7
0.14	1.4

Plot the results on FIGURE 12

Draw a line of best fit. [3 marks]

FIGURE 12

Acceleration in $\mathrm{m} / \mathrm{s}^{2}$

07.6 Describe the relationship between mass and acceleration. [1 mark]

\qquad
[Turn over]
12

| 0 | 8 | A magnet produces a magnetic |
| :--- | :--- | :--- | field.

| 0 | 8 | 1 |
| :--- | :--- | :--- | Which diagram shows the magnetic field pattern around a bar magnet? [1 mark]

Tick ONE box.

49
08.2 FIGURE 13 shows three metal blocks.
The blocks are not labelled.
One block is a permanent magnet, one is iron and one is aluminium. FIGURE 13

Describe how another permanent magnet can be used to identify the blocks. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

50

\section*{| 0 | 8 | 3 |
| :--- | :--- | :--- | FIGURE 14 shows a toy crane.}

FIGURE 14

The toy crane uses an electromagnet to pick up and move the blocks.

Explain how this electromagnet is able to pick up and move the blocks. [6 marks]
\qquad
\qquad

51

END OF QUESTIONS

52

There are no questions printed on this page

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

