

jun198520101

Surname

Other Names

Centre Number

Candidate Number

Candidate Signature

Monday 13 May 2019 Morning

Time allowed: 1 hour 30 minutes

There are no additional materials required for
this paper.

At the top of the page, write your surname and other
names, your centre number, your candidate number
and add your signature.

[Turn over]

GCSE
COMPUTER SCIENCE
Paper 1 Computational thinking and problem-solving

8520/1

A

2

02

INSTRUCTIONS

• Use black ink or black ball-point pen. Use pencil only

for drawing.
• Answer ALL questions.
• You must answer the questions in the spaces

provided.
• Do all rough work in this book. Cross through any

work you do not want to be marked.
• You are free to answer questions that require a

coded solution in whatever format you prefer as long
as your meaning is clear and unambiguous.

• You must NOT use a calculator.

INFORMATION

• The total number of marks available for this paper is

80.

3

03

ADVICE

For the multiple-choice questions, completely fill in the
lozenge alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS

If you want to change your answer you must
cross out your original answer as shown.

If you wish to return to an answer previously
crossed out, ring the answer you now wish to
select as shown.

DO NOT TURN OVER UNTIL TOLD TO DO SO

4

04

Answer ALL questions.

0 1 The pseudo-code in FIGURE 1 assigns two

string values to two variables.

FIGURE 1

title ← 'computer science'
level ← 'gcse'

0 1 . 1 Shade ONE lozenge that shows the length of

the contents of the variable level in
FIGURE 1. [1 mark]

 A 1

 B 2

 C 3

 D 4

5

05

0 1 . 2 Shade ONE lozenge that shows the result of
concatenating the variable title with the
variable level in FIGURE 1. [1 mark]

 A 'computer science gcse'

 B 'Computer Science GCSE'

 C 'computersciencegcse'

 D 'computer sciencegcse'

[Turn over]

6

06

0 1 . 3 Shade ONE lozenge to show which of the
following strings is a substring of the variable
title in FIGURE 1. [1 mark]

 A 'compsci'

 B 'puters'

 C 'sci'

 D 'tersci'

7

07

0 1 . 4 The Unicode character code of title[0],
which is 'c', is 99.

Shade ONE lozenge to show the Unicode
character code of the character level[3] in
FIGURE 1. [1 mark]

 A 95

 B 99

 C 101

 D 103

[Turn over]

4

08

8

0 2 The three examples of code shown in FIGURE 2 are all equivalent to
one another.

FIGURE 2

Example 1 Example 2 Example 3
a ← 4
b ← 3
IF a = b THEN
 c ← a + b
ENDIF

 MOV R0, #4
 MOV R1, #3
 CMP R0, R1
 BNE end
 ADD R2, R0, R1
end:
 HLT

1001 0000 0100 0000
1001 0001 0011 0000
0100 0000 0001 0000
1010 0101 0000 0000
1100 0010 0000 0001
1111 0000 0000 0000

09

9

BLANK PAGE

[Turn over]

10

10

0 2 . 1 Shade ONE lozenge to show the statement that
is true about FIGURE 2, on page 8. [1 mark]

 A None of the examples of code is in a

low-level language.

 B Only one of the examples of code is

in a low-level language.

 C Only two of the examples of code are

in low-level languages.

 D All three of the examples of code are

in low-level languages.

0 2 . 2 Explain why a developer, who is good at both

low-level and high-level programming, would
normally use high-level languages when writing
programs. [4 marks]

11

11

[Turn over]

12

12

BLANK PAGE

13

13

0 2 . 3 Statements A and B refer to two different types
of program translator.

STATEMENT A: This type of translator can
convert a high-level language program into
machine code. The source code is analysed
fully during the translation process. The result
of this translation can be saved, meaning the
translation process does not need to be
repeated.

STATEMENT B: This type of translator was
used to convert the code in
EXAMPLE 2 to the code in EXAMPLE 3 in
FIGURE 2, on page 8.

State the type of program translators referred
to in statements A and B. [2 marks]

 Statement A:

 Statement B:

[Turn over]

7

14

14

0 3 A cake recipe uses 100 grams of flour and
50 grams of sugar for every egg used in the
recipe.

FIGURE 3 shows the first line of an algorithm
that will be used to calculate the amount of
flour and sugar required based on the number
of eggs being used. The number of eggs is
entered by the user.

FIGURE 3

eggsUsed USERINPUT

0 3 . 1 Shade ONE lozenge to show which of the

following lines of code correctly calculates the
amount of flour needed in grams. [1 mark]

 A flourNeeded ← USERINPUT

 B flourNeeded ← eggsUsed

* USERINPUT

 C flourNeeded ← eggsUsed * 100

 D flourNeeded ← eggsUsed * 50

15

15

0 3 . 2 Shade ONE lozenge to show which
programming technique has been used in all of
the lines of code in QUESTION 03.1. [1 mark]

 A Assignment

 B Indefinite iteration

 C Nested iteration

 D Selection

[Turn over]

16

16

0 3 . 3 The developer wants to use validation to
ensure that the user can only enter a positive
number of eggs, ie one egg or more. The
maximum number of eggs that can be used in
the recipe is eight.

Develop an algorithm, using either
pseudo-code or a flowchart, so that the number
of eggs is validated to ensure the user is made
to re-enter the number of eggs used until a
valid number is entered.

You should assume that the user will always
enter an integer. [4 marks]

17

17

[Turn over]

18

18

6

19

19

BLANK PAGE

[Turn over]

20

20

0 4 . 1 Complete the trace table for the algorithm
shown in FIGURE 4 for when the user enters
the value 750 when prompted. [4 marks]

FIGURE 4

constant PAYLOAD_SIZE ← 250
constant HEADER_SIZE ← 50
OUTPUT ‘Enter the number of bits of data to
be sent’
dataToBeSent ← USERINPUT
totalSize ← PAYLOAD_SIZE + HEADER_SIZE
numberOfPackets ← 0
REPEAT
 dataToBeSent ← dataToBeSent – totalSize
 numberOfPackets ← numberOfPackets + 1
UNTIL dataToBeSent ≤ 0

totalSize dataToBeSent numberOfPackets

 750

21

21

0 4 . 2 State why both PAYLOAD_SIZE and
HEADER_SIZE from the algorithm in FIGURE 4
did not need to be included in the trace table.
[1 mark]

0 4 . 3 Shade ONE lozenge to show which of the

following best represents the input and output
to/from the algorithm in FIGURE 4. [1 mark]

 A Input: dataToBeSent,

output: numberOfPackets

 B Input: numberOfPackets,

output: totalSize

 C Input: totalSize,

output: dataToBeSent

[Turn over]

22

22

0 4 . 4 A developer looks at the algorithm in
FIGURE 4, on page 20, and realises that the
use of iteration is unnecessary if they use a
combination of the DIV and MOD operators.

• DIV calculates integer division,

eg 11 DIV 4 = 2

• MOD calculates the remainder after integer
division, eg 11 MOD 4 = 3

The programmer realises that she can rewrite
the algorithm by replacing the REPEAT-UNTIL
structure with code that uses selection, MOD
and DIV instead.

Complete this new algorithm, on the opposite
page, by stating the code that should be
written in the boxes labelled A, B and C. This
new algorithm should calculate the same final
result for the variable numberOfPackets as
the original algorithm in FIGURE 4. [3 marks]

23

23

constant PAYLOAD_SIZE ← 250
constant HEADER_SIZE ← 50
OUTPUT ‘Enter the number of bits of
data to be sent’
dataToBeSent ← USERINPUT
totalSize ← PAYLOAD_SIZE +
HEADER_SIZE
numberOfPackets ← dataToBeSent DIV
totalSize

IF A MOD B > 0 THEN

 numberOfPackets ← C hjjkh
ENDIF

A

B

C

[Turn over]

9

24

24

0 5 The expression (B AND (NOT A)) OR (B
AND C) can be represented by the logic circuit
shown in FIGURE 5. In the circuit the logic
gates are marked with labels instead of their
proper symbols.

FIGURE 5

0 5 . 1 State the name of the logic gate used at Gate 1
in FIGURE 5. [1 mark]

0 5 . 2 State the name of the logic gate used at Gate 2

in FIGURE 5. [1 mark]

25

25

0 5 . 3 Draw the logic circuit symbol in the space
below for the logic gate used at Gate 3 in
FIGURE 5. [1 mark]

0 5 . 4 Draw the logic circuit symbol in the space

below for the logic gate used at Gate 4 in
FIGURE 5. [1 mark]

[Turn over]

26

26

0 5 . 5 Complete the truth table for the Boolean
expression:

(X AND Y) OR (NOT X)

[3 marks]

0 5 . 6 A truth table for the complex Boolean

expression:

(A1 AND (NOT A2) AND A3) OR (A1 AND
A2 AND A3)

is shown in FIGURE 6, on the opposite page.

X Y X AND Y NOT X (X AND Y) OR (NOT X)

0 0

0 1

1 0

1 1

27

27

 FIGURE 6

A1 A2 A3 OUTPUT
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Shade ONE lozenge which shows a simpler
expression which is the equivalent of the
original, more complex, expression. [1 mark]

 A NOT A1

 B A2 OR A3

 C A1 AND (NOT A2)

 D A1 AND A3

[Turn over]

8

28

28

0 6 Run length encoding (RLE) is a form of
compression that creates frequency/data pairs
to describe the original data.

For example, an RLE of the bit pattern
00000011101111 could be 6 0 3 1 1 0 4 1
because there are six 0s followed by three 1s
followed by one 0 and finally four 1s.

The algorithm in FIGURE 7, on the opposite
page, is designed to output an RLE for a bit
pattern that has been entered by the user.

Five parts of the code labelled L1, L2, L3, L4
and L5 are missing.

• Note that indexing starts at zero.

29

29

[Turn over]

 FIGURE 7

pattern ← L1
i ← L2
count ← 1
WHILE i < LEN(pattern)-1
 IF pattern[i] L3 pattern[i+1]
THEN
 count ← count + 1
 ELSE
 L4
 OUTPUT pattern[i]
 count ← 1
 ENDIF
 L5
ENDWHILE
OUTPUT count
OUTPUT pattern[i]

0 6 . 1 Shade ONE lozenge to show what code should

be written at point L1 of the algorithm. [1 mark]

 A OUTPUT

 B ꞌRLEꞌ

 C True

 D USERINPUT

30

30

BLANK PAGE

31

31

[Turn over]

0 6 . 2 Shade ONE lozenge to show what value should
be written at point L2 of the algorithm. [1 mark]

 A -1

 B 0

 C 1

 D 2

0 6 . 3 Shade ONE lozenge to show what operator

should be written at point L3 of the algorithm.
[1 mark]

 A =

 B ≤

 C <

 D ≠

32

32

0 6 . 4 Shade ONE lozenge to show what code should
be written at point L4 of the algorithm. [1 mark]

 A count

 B count ← count - 1

 C count ← USERINPUT

 D OUTPUT count

0 6 . 5 Shade ONE lozenge to show what code should

be written at point L5 of the algorithm. [1 mark]

 A i ← i * 2

 B i ← i + 1

 C i ← i + 2

 D i ← i DIV 2

33

33

0 6 . 6 State a run length encoding of the series of
characters ttjjeeess [2 marks]

[Turn over]

34

34

BLANK PAGE

35

35

0 6 . 7 A developer implements the algorithm shown
in FIGURE 7, on page 29, and tests their code
to check that it is working correctly. The
developer tests it only with the input bit pattern
that consists of six zeros and it correctly
outputs 6 0.

Using example test data, state THREE further
tests that the developer could use to improve
the testing of their code. [3 marks]

[Turn over]

10

36

36

0 7 A developer creates the algorithm shown in
FIGURE 8 to provide support for users of a new
brand of computer monitor (display).

• Line numbers are included but are not part of

the algorithm.

FIGURE 8

1 OUTPUT ꞌCan you turn it on?ꞌ
2 ans ← USERINPUT
3 IF ans = ꞌnoꞌ THEN
4 OUTPUT ꞌIs it plugged in?ꞌ
5 ans ← USERINPUT
6 IF ans = ꞌyesꞌ THEN
7 OUTPUT ꞌContact supplierꞌ
8 ELSE
9 OUTPUT ꞌPlug it in and
 start againꞌ
10 ENDIF
11 ELSE
12 OUTPUT ꞌIs it connected to the
 computer?ꞌ
13 ans ← USERINPUT
14 IF ans = ꞌyesꞌ THEN
15 OUTPUT ꞌContact supplierꞌ
16 ELSE
17 OUTPUT ꞌConnect it to the
 computerꞌ
18 ENDIF
19 ENDIF

37

37

0 7 . 1 Shade ONE lozenge to show which
programming technique is used on line 3 of the
algorithm in FIGURE 8. [1 mark]

 A Assignment

 B Iteration

 C Selection

0 7 . 2 Shade ONE lozenge to show the data type of

the variable ans in the algorithm in FIGURE 8.
[1 mark]

 A Date

 B Integer

 C Real

 D String

[Turn over]

38

38

BLANK PAGE

39

39

0 7 . 3 Regardless of what the user inputs, the same
number of OUTPUT instructions will always
execute in the algorithm shown in FIGURE 8,
on page 36.

State how many OUTPUT instructions will
execute whenever the algorithm is run.
[1 mark]

0 7 . 4 The phrase ꞌContact supplierꞌ appears

twice in the algorithm in FIGURE 8.

State the TWO possible sequences of user
input that would result in ꞌContact
supplierꞌ being output. [2 marks]

 Sequence 1:

 Sequence 2:

[Turn over]

40

40

0 7 . 5 Another developer looks at the algorithm
shown in FIGURE 8 and makes the following
statement.

“At the moment if the user enters ‘y’ or ‘n’ they
will sometimes get unexpected results. This
problem could have been avoided.”

Explain why this problem has occurred and
describe what would happen if a user entered
‘y’ or ‘n’ instead of ‘yes’ or ‘no’.

You may include references to line numbers in
the algorithm where appropriate. You do NOT
need to include any additional code in your
answer. [3 marks]

41

41

[Turn over]

8

42

42

0 8 . 1 State the comparisons that would be made if
the binary search algorithm was used to search
for the value 30 in the following array (array
indices have been included above the array).

0 1 2 3 4 5 6
1 6 14 21 27 31 35

[3 marks]

43

43

0 8 . 2 For a binary search algorithm to work correctly
on an array of integers, what property must be
true about the array? [1 mark]

[Turn over]

4

44

44

0 9 A black and white image can be represented as
a two-dimensional array where:
• 0 represents a white pixel
• 1 represents a black pixel.

Two images are exact inverses of each other if:
• every white pixel in the first image is black in

the second image
• every black pixel in the first image is white in

the second image.

For example, B is the inverse of A but C is not
the inverse of A:

A B C

 A developer has started to create an

algorithm that compares two 3x3 black and
white images, image1 and image2, to see if
they are exact inverses of each other.

Complete the algorithm in pseudo-code,
ensuring that, when the algorithm ends, the
value of the variable inverse is true if the

45

45

two images are inverses of each other or
false if they are not inverses of each other.

The algorithm should work for any 3x3 black
and white images stored in image1 and
image2.

• Note that indexing starts at zero.

image1 ← [[0, 0, 0], [0, 1, 1],
 [1, 1, 0]]
image2 ← [[1, 1, 1], [1, 1, 0],
 [0, 0, 1]]
inverse ← true
i ← 0
WHILE i ≤ 2
 j ← 0
 WHILE j ≤ 2

[6 marks]

[Turn over]

46

46

BLANK PAGE

47

47

[Turn over]

48

48

49

49

[Turn over]

6

50

50

1 0 A developer wants to simulate a simple version
of the game of Battleships™. The ships are
located on a one-dimensional array called
board. There are always three ships placed on
the board:

• one ‘carrier’ that has size three
• one ‘cruiser’ that has size two
• one ‘destroyer’ that has size one.

The size of the board is always 15 squares. A
possible starting configuration is shown in
FIGURE 9 where the indices are also written
above the board.

FIGURE 9

 The carrier, for example, is found at locations
board[1], board[2]and board[3].

A player makes a guess to see if a ship (or part
of a ship) is located at a particular location. If a
ship is found at the location then the player has
‘hit’ the ship at this location.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

51

51

Every value in the board array is 0, 1 or 2.

• The value 0 is used to indicate an empty

location.
• The value 1 is used to indicate if a ship is at

this location and this location has NOT been
hit.

• The value 2 is used to indicate if a ship is at
this location and this location has been hit.

The developer identifies one of the
sub-problems and creates the subroutine
shown in FIGURE 10.

FIGURE 10

SUBROUTINE F(board, location)
 h ← board[location]
 IF h = 1 THEN
 RETURN true
 ELSE
 RETURN false
 ENDIF
ENDSUBROUTINE

[Turn over]

52

52

BLANK PAGE

53

53

1 0 . 1 The subroutine in FIGURE 10, on page 51, uses
the values true and false. Each element of
the array board has the value 0, 1 or 2.

State the most appropriate data type for these
values. [2 marks]

VALUES DATA TYPE

true, false

0, 1, 2

1 0 . 2 The developer has taken the overall problem of

the game Battleships and has broken it down
into smaller sub-problems.

State the technique that the developer has
used. [1 mark]

[Turn over]

54

54

1 0 . 3 The identifier for the subroutine in FIGURE 10,
on page 51, is F. This is not a good choice.
State a better identifier for this subroutine and
explain why you chose it. [2 marks]

 New subroutine identifier:

 Explanation:

55

55

1 0 . 4 The variable h in the subroutine in FIGURE 10,
on page 51, is local to the subroutine. State
TWO properties that only apply to local
variables. [2 marks]

[Turn over]

56

56

1 0 . 5 Develop a subroutine that works out how far
away the game is from ending.

The subroutine should:

• have a sensible identifier
• take the board as a parameter
• work out AND OUTPUT how many hits have

been made
• work out how many locations containing a

ship have yet to be hit and:
• if 0 then output 'Winner'
• if 1, 2 or 3 then output 'Almost there'.

[11 marks]

57

57

[Turn over]

58

58

59

59

[Turn over]

60

60

END OF QUESTIONS

18

61

61

BLANK PAGE

62

62

For Examiner’s Use

Question Mark

1

2

3

4

5

6

7

8

9

10

TOTAL

BLANK PAGE

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of
third-party copyright material are published in a separate booklet rather than including them on the
examination paper or support materials. This booklet is published after each examination series
and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to
contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any
omissions of acknowledgements. If you have any queries please contact the Copyright Team,
AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/IK/Jun19/8520/1/E4

196G8520/1

