

Notes and guidance: Pseudo-code
The pseudo-code described below is provided to assist students preparing for their AQA GCSE Computer Science examination (8525).
In all assessment material, AQA will use a consistent style of pseudo-code as described and shown in this document. This will ensure that, given
sufficient preparation, candidates will understand the syntax of the pseudo-code used in assessments easily. It is not the intention that candidates
must use this style of pseudo-code in their own work or written assessments, although they are free to do so. The only direction to candidates when
answering questions or describing algorithms written in pseudo-code is that their code is clear, consistent and unambiguous.
This document may be updated as required and the latest version will always be available on our website. Updates will not be made mid-year unless an
error is discovered that must be corrected. If this happens centres will be notified of the changes. Ordinary updates will be made over the summer period
with the new version for the following 12 months posted on our website at the start of the academic year, if any updates were made.
The document is not confidential and can be freely shared with students.

General Syntax
• IntExp, RealExp, BoolExp, CharExp and StringExp mean any expression which can be evaluated to an integer, real, Boolean

(False or True), character or string respectively.
• Exp means any expression.
• Emboldened pseudo-code is used to indicate the keywords/operators.
• Exam paper questions will assume that indexing for arrays and strings starts at 0 unless specifically stated otherwise.

© 2021 AQA 2 of 16

Comments

Single line comments # comment

Multi-line comments # comment
comment and so on

Variables and constants

Variable assignment Identifier ← Exp
 a ← 3
 b ← a + 1
 c ← 'Hello'

Constant assignment CONSTANT IDENTIFIER ← Exp

CONSTANT PI ← 3.141
CONSTANT CLASS_SIZE ← 23

Names of constants will always be
written in capitals

© 2021 AQA 3 of 16

Arithmetic operations

Standard arithmetic operations

+
-
*
/

Used in the normal way with brackets to indicate
precedence where needed. For example, a + b *
c would multiply b and c together and then add the
result to a, whereas (a + b) * c would add a and
b together and then multiply the result by c.

The / symbol is used instead of ÷ for division
(for integer division use DIV)

Integer division IntExp DIV IntExp
 9 DIV 5 evaluates to 1
 5 DIV 2 evaluates to 2
 8 DIV 4 evaluates to 2

Modulus operator IntExp MOD IntExp
 9 MOD 5 evaluates to 4
 5 MOD 2 evaluates to 1
 8 MOD 4 evaluates to 0

© 2021 AQA 4 of 16

Relational operators for types that can be clearly ordered

Less than Exp < Exp
4 < 6
'A' < 'B'
'adam' < 'adele'

Greater than Exp > Exp 4.1 > 4.0

Equal to Exp = Exp 3 = 3

Not equal to Exp ≠ Exp qty ≠ 7

Less than or equal to Exp ≤ Exp 3 ≤ 4
4 ≤ 4

Greater than or equal to Exp ≥ Exp 4 ≥ 3
4.5 ≥ 4.5

Boolean operations

Logical AND BoolExp AND BoolExp (3 = 3) AND (3 ≤ 4)

Logical OR BoolExp OR BoolExp (x < 1) OR (x > 9)

Logical NOT NOT BoolExp NOT (a < b)

© AQA 2021 5 of 16

Indefinite (condition controlled) iteration

REPEAT-UNTIL (repeat the
statements until the Boolean
expression is True)

REPEAT

 # statements here

UNTIL BoolExp

a ← 1
REPEAT
 OUTPUT a
 a ← a + 1
UNTIL a = 4
will output 1, 2, 3

WHILE-ENDWHILE (while the
Boolean expression is True,
repeat the statements)

WHILE BoolExp

 # statements here

ENDWHILE

a ← 1
WHILE a < 4
 OUTPUT a
 a ← a + 1
ENDWHILE
will output 1, 2, 3

© AQA 2021 6 of 16

Definite (count controlled) iteration

FOR-TO-[STEP]-
ENDFOR
(If STEP IntExp is
missing it is considered
to be 1.)

FOR Identifier ← IntExp TO IntExp [STEP
IntExp]

 # statements here

ENDFOR

If STEP IntExp is omitted the step value
is 1.

FOR a ← 1 TO 3
 OUTPUT a
ENDFOR
will output 1, 2, 3

FOR a ← 1 TO 5 STEP 2
 OUTPUT a
ENDFOR
will output 1, 3, 5

FOR-IN-ENDFOR
(repeat the statements
the number of times
that there are
characters
in a string)

FOR Identifier IN StringExp

 # statements here

ENDFOR

length ← 0
FOR char IN message
 length ← length + 1
ENDFOR
will calculate the
number of characters
in message

reversed ← ''
FOR char IN message
 reversed ← char +
reversed
ENDFOR
OUTPUT reversed
will output the
string in reverse

© AQA 2021 7 of 16

Selection

IF-THEN-ENDIF (execute the
statements only if the
Boolean expression is True)

IF BoolExp THEN
statements here

ENDIF

a ← 1
IF (a MOD 2) = 0 THEN
 OUTPUT 'even'
ENDIF

IF-THEN-ELSE-ENDIF
(execute the statements
following the THEN if the
Boolean expression is True,
otherwise execute the
statements following the
ELSE)

IF BoolExp THEN
statements here

ELSE
statements here

ENDIF

a ← 1
IF (a MOD 2) = 0 THEN
 OUTPUT 'even'
ELSE
 OUTPUT 'odd'
ENDIF

NESTED IF-THEN-ELSE
ENDIF (use nested versions
of the above to create more
complex conditions)

Note that IF statements can
be nested inside the THEN
part, the ELSE part or both

IF BoolExp THEN
statements here

ELSE
 IF BoolExp THEN
 # statements here

ELSE
 # statements here
ENDIF

ENDIF

a ← 1
IF (a MOD 4) = 0 THEN
 OUTPUT 'multiple of 4'
ELSE
 IF (a MOD 4) = 1 THEN

 OUTPUT 'leaves a remainder of
1'
 ELSE
 IF (a MOD 4) = 2 THEN

 OUTPUT 'leaves a remainder
of 2'
 ELSE

 OUTPUT 'leaves a remainder
of 3'

 ENDIF
ENDIF

ENDIF

© AQA 2021 8 of 16

IF-THEN-ELSE IF ENDIF
(removes the need for
multiple indentation levels)

IF BoolExp THEN
statements here

ELSE IF BoolExp THEN
statements here
possibly more ELSE

IFs
ELSE

statements here
ENDIF

a ← 1
IF (a MOD 4) = 0 THEN
 OUTPUT 'multiple of 4'
ELSE IF (a MOD 4) = 1 THEN

OUTPUT 'leaves a remainder of 1'
ELSE IF (a MOD 4) = 2 THEN

OUTPUT 'leaves a remainder of 2'
ELSE

OUTPUT 'leaves a remainder of 3'
ENDIF

© AQA 2021 9 of 16

Arrays

Assignment Identifier ← [Exp, … ,Exp] primes ← [2, 3, 5, 7, 11, 13]

Accessing an element Identifier[IntExp]

primes[0]

evaluates to 2

(questions on exam papers will start
indexing at 0 unless specifically stated
otherwise)

Updating an element Identifier[IntExp] ← Exp
primes[5] ← 17

array is now [2, 3, 5, 7, 11, 17]

Accessing an element
in a two-dimensional
array

Identifier[IntExp][IntExp]

table ← [[1, 2],[2, 4],[3, 6],[4, 8]]

table[3][1]

evaluates to 8 as second element
(with index 1) of fourth array
(with index 3) in table is 8

© AQA 2021 10 of 16

Updating an element in
a two- dimensional
array

Identifier[IntExp][IntExp] ← Exp

table[3][1] ← 16

table is now
#[[1, 2],
[2, 4],
[3, 6],
[4, 16]]

Array length LEN(Identifier)

LEN(primes)
evaluates to 6 using example above

LEN(table)
evaluates to 4 using example above

LEN(table[0])
evaluates to 2 using example above

FOR-IN-ENDFOR
(repeat the statements
the number of times
that there are elements
in an array)

NOTE: array items
cannot be modified
using this method

FOR Identifier IN array

 # statements here

ENDFOR

primes ← [2, 3, 5, 7, 11, 13]
total ← 0
FOR prime IN primes
 total ← total + prime
ENDFOR
OUTPUT 'Sum of the values in primes is'
OUTPUT total

© AQA 2021 11 of 16

Records

Record declaration

RECORD Record_identifier

 field1 : <data type>
 field2 : <data type>
 …

ENDRECORD

RECORD Car
 make : String
 model : String
 reg : String
 price : Real
 noOfDoors : Integer
ENDRECORD

Variable Instantiation
varName ←
Record_identifier(value1,
value2, …)

myCar ← Car('Ford', 'Focus', 'DX17
GYT', 1399.99, 5)

Assigning a value to a
field in a record varName.field ← Exp

myCar.model ← 'Fiesta'

The model field of the myCar
record is assigned the value
'Fiesta'.

Accessing values of fields
within records varName.field

OUTPUT myCar.model

Will output the value stored in
the
model field of the myCar record

© AQA 2021 12 of 16

Subroutines
Note: for the purposes of this pseudo-code definition subroutines that contain a RETURN keyword are functions. Those that do not
contain a RETURN keyword are procedures.

Subroutine definition

SUBROUTINE Identifier(parameters)

 # statements here

ENDSUBROUTINE

SUBROUTINE showAdd(a, b)
 result ← a + b
 OUTPUT result
ENDSUBROUTINE

SUBROUTINE sayHi()
 OUTPUT 'Hi'
ENDSUBROUTINE

Both of these subroutines are
procedures

Subroutine return value RETURN Exp

SUBROUTINE add(a, b)
 result ← a + b
 RETURN result
ENDSUBROUTINE

This subroutine is a function

Calling subroutines

Subroutines without a return
value

Identifier(parameters)

Subroutines with a return value

Identifier ←

showAdd(2, 3)

answer ← add(2, 3) * 6

© AQA 2021 13 of 16

Identifier(parameters)

String handling

String length LEN(StringExp)

LEN('computer science')

evaluates to 16(including
space)

Position of a character POSITION(StringExp, CharExp)

POSITION('computer science', 'm')

evaluates to 2 (as with
arrays
exam papers will start
indexing at 0 unless
specifically stated
otherwise)

Substring (the substring is
created by the first parameter
indicating the start position
within the string, the second
parameter indicating the final
position within the string and
the third parameter being the
string itself).

SUBSTRING(IntExp, IntExp,
StringExp)

SUBSTRING(2, 9, 'computer
science')

evaluates to 'mputer s'

Concatenation StringExp + StringExp 'computer' + 'science'

© AQA 2021 14 of 16

evaluates to 'computerscience'

© AQA 2021 15 of 16

String and Character Conversion

Converting string to integer STRING_TO_INT(StringExp)
STRING_TO_INT('16')

evaluates to the integer 16

Converting string to real STRING_TO_REAL(StringExp)
STRING_TO_REAL('16.3')

evaluates to the real 16.3

Converting integer to string INT_TO_STRING(IntExp)
INT_TO_STRING(16)

evaluates to the string '16'

Converting real to string REAL_TO_STRING(RealExp)
REAL_TO_STRING(16.3)

evaluates to the string '16.3'

Converting character to
character code CHAR_TO_CODE(CharExp)

CHAR_TO_CODE('a')

evaluates to 97 using ASCII/Unicode

Converting character code to
character CODE_TO_CHAR(IntExp)

CODE_TO_CHAR(97)

evaluates to 'a' using ASCII/Unicode

© AQA 2021 and its licensors. All rights reserved. 16 of 16

Input/output

User input USERINPUT a ← USERINPUT

Output OUTPUT StringExp, … StringExp

OUTPUT a
OUTPUT a, g

The output statement can be
followed by multiple StringExp
separated by commas

Random number generation

Random integer generation
(between two integers
inclusively)

Identifier ← RANDOM_INT(IntExp,
IntExp)

diceRoll ← RANDOM_INT(1, 6)

will randomly generate an
integer between 1 and 6
inclusive

