AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE

ENGINEERING

Unit 1 Written Paper

Wednesday 20 May 2020
Morning
Time allowed: 2 hours

Materials

For this paper you must have:

- normal writing and drawing instruments
- a calculator.

Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Some questions will require you to shade a circle. If you make a mistake cross through the incorrect answer.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.
- You are reminded of the need for good English and clear presentation in your answers.

Answer all questions in the spaces provided.

For each question completely fill in the circle alongside the appropriate answer.
CORRECT METHOD $-$ WRONG METHODS
∞
∞ - \square

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

| 0 | 1 | $\mathbf{1}$ |
| :--- | :--- | :--- | Which one of the following properties describes the ability of a material to withstand wear and abrasion?

A Ductility

B Hardness

C Stiffness

D Toughness

| 0 | 1 | 2 |
| :--- | :--- | :--- | D^{2} The list below shows a range of different polymers. Shade two circles to identify the thermosetting polymers.

A Acrylic
B Epoxy
C Melamine
D Nylon
E Polycarbonate
F Polystyrene

0

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{3}$ Which one of the following materials is manufactured from layers of timber, bonded |
| :--- | :--- | :--- | together with an adhesive?

A Ceramic

B Medium Density Fibre board0

C Nylon

D Plywood

| 0 | 1 |
| :--- | :--- | :--- | .4 What is the name of the force that opposes the forward motion of an aircraft through the air?

A Drag

B Lift

C Pitch

D Thrust \square

Question 1 continues on the next page

0	1	5	Figure 1 shows a component used in circuits.

Figure 1

What is the name of the component?

A Capacitor

B Diode

C Resistor \square
D Transistor
0

$\mathbf{0}$	$\mathbf{1}$.6	Shade one circle that gives the name of the process described below.

High pressure and temperature are used to make products from metal powder.

A Die casting

B Etching

C Fused deposition 0

D Sintering

$$
0
$$

$\mathbf{0}$	$\mathbf{1} .7$	$\mathbf{7}$

Figure 2

Complete the following statement using the word bank provided.

The tray in Figure 2 has been made using a \qquad process.

The moulds used in the process are usually made from \qquad
because the mould material needs to be very \qquad .

Word bank

bending, brass, copper, ductile, folding, hard, high carbon steel, malleable, press forming

Figure 3

One bracket is to be made in a school workshop.
Complete the production plan below by giving the names of tools or equipment to be used for each stage.

Stage	Tool/equipment
Cut bar to length	
Finish the cut edges of the bar	
Mark the position of the hole	
Make 4 mm diameter hole	
Bend bar to a right angle	

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ |
| :--- | :--- | :--- | The steel bracket is to be used in a garden.

Name a suitable surface finish that could be applied to the bracket.
\qquad

Reason 1 \qquad
\qquad
Reason 2 \qquad
\qquad
Reason 3 \qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{4}$ A batch of components will be made using Computer Aided Manufacture (CAM). |
| :--- | :--- | :--- | :--- | Discuss two benefits of using CAM to produce a batch of components.

\qquad

Question 2 continues on the next page

0	2	5

Figure 4

To make the bracket, angle \mathbf{A}° needs to be calculated.
Calculate angle \mathbf{A}° using the formula Tan $\mathrm{A}=$ Opposite/Adjacent.
Show your working.

| 0 | 3 |
| :--- | :--- | Figure 5 shows two pieces of a metal tray that are to be joined together.

Figure 5

| $\mathbf{0}$ | $\mathbf{3} .1$ | $\mathbf{1}$ |
| :--- | :--- | :--- | pieces.

Advantage 1 \qquad
\qquad
\qquad
Advantage 2 \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$. |
| :--- | :--- | $\mathbf{2}$ Give two advantages of hard soldering the pieces together.

Advantage 1 \qquad
\qquad
\qquad
Advantage 2 \qquad
\qquad
\qquad

| 0 | 3 | 3 | Name two other processes that use heat, and can be used to join the pieces |
| :--- | :--- | :--- | :--- | together.

Process 1 \qquad
\qquad
\qquad
Process 2 \qquad
\qquad

Turn over for the next question

$\mathbf{0}$	$\mathbf{4}$.1	A hand-held electric drill can be powered using a mains power supply or batteries.

Discuss why both methods are used.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{4}$ | 2 |
| :--- | :--- | :--- | Use notes and/or sketches to explain the difference between an alternating current (AC) and a direct current (DC) power supply.

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{3}$
A circuit diagram for a lighting circuit is shown in Figure 6.			

Figure 6

Name the components labelled \mathbf{A} and \mathbf{B} in Figure 6.

Component A \qquad
Component B \qquad

| $\mathbf{0}$ | $\mathbf{4} .4$ Explain the function of the relay RL1 in the lighting circuit shown in Figure 6. |
| :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad

Question 4 continues on the next page

| 0 | 4 | 5 |
| :--- | :--- | :--- | A timer circuit is controlled by a microcontroller.

Figure 7 shows the system diagram for the timer circuit.
Figure 7
Microcontroller

The system works as follows:

- the green LED is on
- when Switch \mathbf{A} is pressed, the green LED turns off, and the red LED turns on for 10 seconds
- the red LED then turns off, and the green LED turns back on
- the sequence works continuously.

Complete the flowchart on page $\mathbf{1 5}$ so that the system works as intended.

| 0 | $\mathbf{4}$ | 6 | Electronic circuits can be designed and tested using Computer Aided Design (CAD) |
| :--- | :--- | :--- | :--- | before being manufactured.

Discuss three benefits of using CAD to test circuits before they are manufactured
\qquad
Turn over for the next question Turn over

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{1}$ Describe two safety hazards and suitable precautions when using powered |
| :--- | :--- | :--- | machinery such as lathes and milling machines.

Hazard \qquad
Precaution \qquad
Hazard \qquad
Precaution \qquad

In the space on page 19, use notes and/or sketches to describe how the slot would be machined using a milling machine.

Include the names of tools and processes in your answer.

Figure 8

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{1}$ A pulley system is designed to lift heavy loads.

The mechanical advantage of the pulley system is 3
Calculate the pulling effort needed to lift a load of 125 N .

Formula \qquad
Working \qquad
\qquad
\qquad
Answer with units \qquad

Calculate the stress in the cable when a mass of 70 kg is lifted.
You should assume a value for gravity of 9.81

Formula \qquad
Working \qquad
\qquad
\qquad
\qquad
Answer \qquad

Figure 9

When a load is applied to the link, it stretches by 3 mm . Calculate the strain in the link.
[3 marks]
Formula \qquad
Working \qquad
\qquad
\qquad
\qquad
Answer

| 0 | 6 | 4 |
| :--- | :--- | :--- | When a stress of $1.8 \mathrm{~N} / \mathrm{mm}^{2}$ is applied to the link, the strain produced is 0.017 Calculate the Young's modulus of the link material.

Give your answer to one decimal place.

Formula \qquad
Working \qquad
\qquad
\qquad
\qquad
Answer with units

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$	Study the mechanical system shown in Figure 10.

Figure 10

Complete the statement:

The system converts \qquad motion into motion.

0	$\mathbf{7} .2$	Figure 11 shows some internal parts of a car engine.

Figure 11

Discuss two reasons why car engines are lubricated.
[4 marks]
1
\qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$	Explain the function of cams in a car engine.

\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{7}$ | .4 |
| :--- | :--- | :--- | Cars can be powered by fossil fuels, such as petrol and diesel, or by batteries.

Analyse and evaluate the use of both technologies to power cars, taking into consideration the following aspects:

- environmental impact
- ease of use for the car driver.
\qquad
Turn over for the next question Turn over

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$	$\begin{array}{l}\text { Frames for racing bicycles are often made from carbon-fibre reinforced polymer } \\ \text { (CRP). }\end{array}$

Give three reasons why CRP is suitable for bicycle frames.

Reason 1

Reason 2

Reason 3 \qquad

$\mathbf{0}$	$\mathbf{8} .2$	$\mathbf{2}$ To assemble a bicycle wheel, a manufacturer uses:

- one wheel rim
- one hub
- 28 spokes.

The cost of the materials is shown in Table 1.

Table 1

Item	Cost (each)
Wheel rim	$£ 24.50$
Hub	$£ 5.60$
Spoke	58 p

The assembly process takes 40 minutes, and a worker is paid $£ 12.60$ per hour.
Calculate the cost of assembling one wheel. Show your working.

Working \qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

Turn over for the next question

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{1} 5570$ terawatts (TW) of electricity were generated in the UK in 2018.

1.3% of the electricity was generated from tidal sources.
Calculate the amount of electricity generated from tidal sources.
Give your answer, in terawatts, to one decimal place.

Working
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{2}$ Energy sources for electricity generation are shown in Table 2.

Table 2

Source	\% of total
Coal	38
Gas	23
Renewables	25
Nuclear	10
Oil	4

On the grid below, and using the data given in Table 2, present the information in graphical form.

Marks will be awarded for labelling the axes clearly, and accurately drawing the graph.

$\mathbf{1}$	$\mathbf{0}$.	$\mathbf{1}$ Which is the correct formula for calculating series resistance?

A $R_{t}=R_{1}+R_{2}$

B $\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}-\mathrm{R}_{2}$

C $R_{t}=R_{1} \times R_{2}$

D $R_{t}=R_{1} \div R_{2}$ \square

1	0	2

Figure 12

Calculate the value of resistor \mathbf{A} if the total resistance of the resistors is 100 Ohms.
\qquad
\qquad
\qquad
Answer

| 1 | 1 |
| :--- | :--- | Study the isometric drawing of the component shown in Figure 13.

Figure 13

Complete the orthographic (3rd angle) drawing of the component below by:

- finishing the two incomplete views
- adding a dimension to show that Face \mathbf{A} is 140 mm long
- naming the two views you have completed.

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

