Surname	
Other Names	
Centre Number	
Candidate Number _	
Candidate Signature	

GCSE MATHEMATICS

Higher Tier Paper 2 Calculator

8300/2H

Monday 6 November 2017

Morning

Time allowed: 1 hour 30 minutes

For this paper you must have:

- a calculator
- mathematical instruments.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

ADVICE

 In all calculations, show clearly how you work out your answer.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided

1 Circle the fraction that is equivalent to 3.875 [1 mark]

$$\frac{15}{4}$$

$$\frac{29}{8}$$

$$\frac{31}{8}$$

$$\frac{15}{8}$$

What is 50 as a percentage of 20?

Circle your answer. [1 mark]

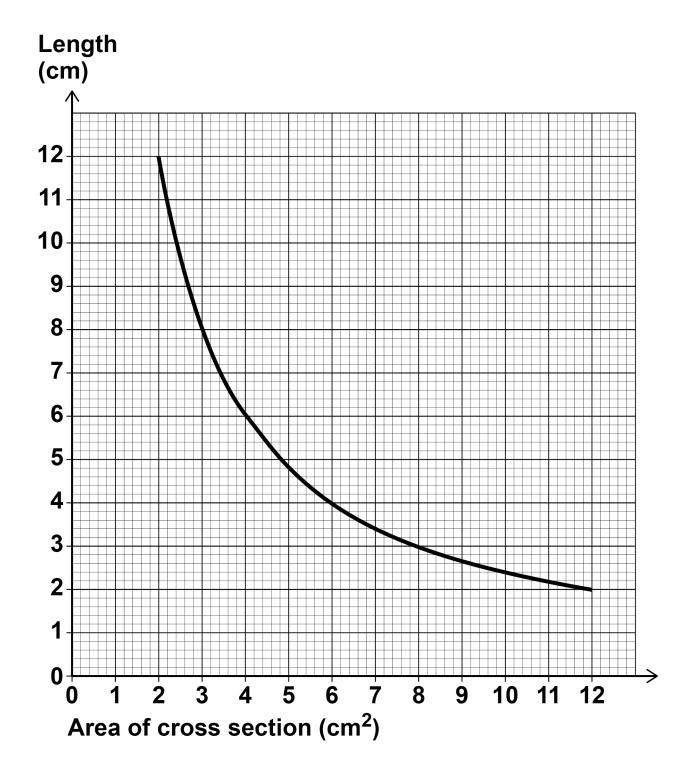
3 Circle the point that does NOT lie on the curve $y = x^3$ [1 mark]

$$\left(-\frac{1}{2},-\frac{1}{8}\right)$$

$$\left(\frac{1}{3},\frac{1}{9}\right)$$

$$(-1, -1)$$

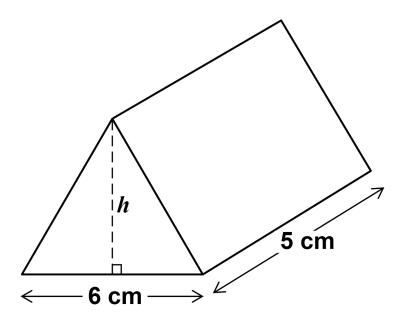
4	Which ONE of these is a unit of density
	Circle your answer. [1 mark]


 kg/m^2 m^2/kg kg/m^3 m^3/kg

5 Solve 4(3x-2) = 2x-5 [3 marks]

x =

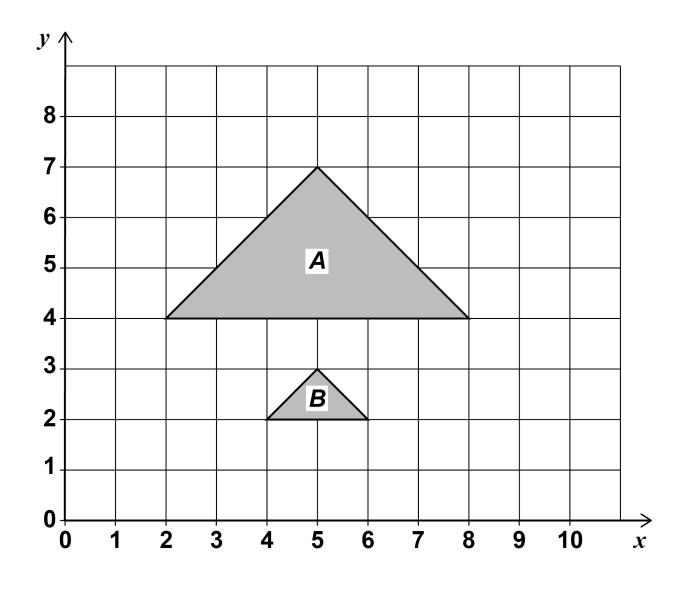
6 The graph shows information about prisms with the same volume.


6 (a)	Give ONE example to show the volume is 24 cm ³ [1 mark]

BLANK PAGE

6 (b) The diagram shows a prism with volume 24 cm³ The height of the triangular cross section is h.

Work out the height, h. [3 marks]

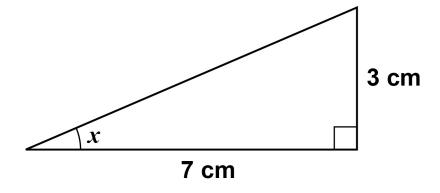

Answer cm

BLANK PAGE

7 Describe fully the SINGLE transformation that maps triangle *A* to triangle *B*. [3 marks]

The table shows information about the distances walked by 120 students on their way to school one week.

Distance, <i>x</i> (miles)	Frequency	
0 < <i>x</i> ≤ 5	20	
5 < <i>x</i> ≤ 10	48	
10 < <i>x</i> ≤ 15	30	
15 < <i>x</i> ≤ 20	22	
	Total = 120	



Work out an estimate for the mean	n distance. [3 marks]		
			_
			_ 3
			_
			_
			_
Answer		miles	

9 Work out the size of angle x. [2 marks]

The diagram is not drawn accurately.

degrees

Answer

Work out the next term of this quadratic sequence. [2 marks]

5

8

14

23

.

Answer

11 Circle the expression that is equivalent to

$$\frac{3x^2}{6x^2+3} \qquad [1 \text{ mark}]$$

$$\frac{x^2}{2x^2+3}$$

$$\frac{x^2}{6x^2+1}$$

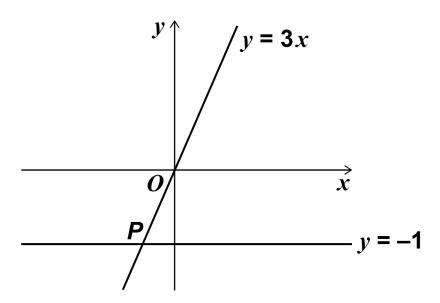
$$\frac{x^2}{2x^2+1}$$

$$\frac{1}{2} + x^2$$

5

12 The table shows information about the UK and Germany.

	Population	Area (square miles)
UK	64 000 000	95 000
Germany	82 000 000	140 000


Population density = $\frac{\text{population}}{\text{area}}$

Compare the population densities of the UK and Germany. [3 marks]

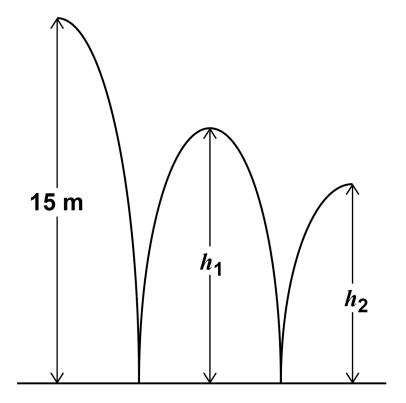
13 Two straight lines intersect at point *P*.

The diagram is not drawn accurately.

Circle the coordinates of P. [1 mark]

$$\left(-1,-\frac{1}{3}\right)$$

$$\left(\begin{array}{cc} -\frac{1}{3}, -1 \end{array}\right)$$


4

14 A ball is thrown from a height of 15 metres.

It bounces to height h_1 , then to height h_2 as shown.

The diagram is not drawn accurately.

 h_1 is three quarters of the original height.

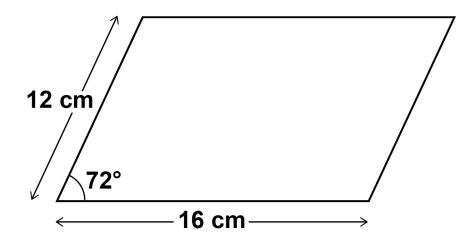
14 (a)	Jack expects h_2 to be three quarters of h	1
	Work out the value of h_2 that he expects. [2 marks]	
	Answer	metres
		11161169

BLANK PAGE

How does this affect the answer to part (a)? Tick a box. The ball bounced higher than he expected The ball bounced lower than he expected Show working to support your answer. [2 marks]	14 (b)	In fact, h_2 is two thirds of h_1	
The ball bounced higher than he expected The ball bounced lower than he expected		How does this affect the answer to part (a)?	
The ball bounced lower than he expected		Tick a box.	
expected			
Show working to support your answer. [2 marks]			
		Show working to support your answer. [2 marks]]
			- -
			_
			-
			-

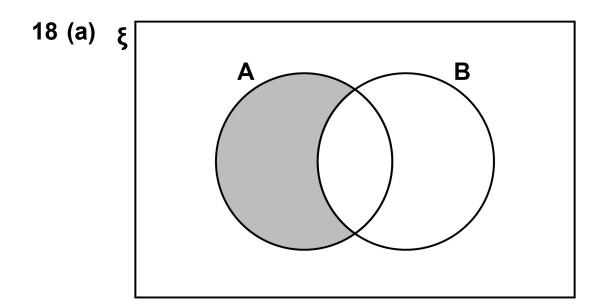
Mirek invests £6000 at a compound interest rate of 1.5% per year.
He wants to earn more than £1000 interest.
Work out the LEAST time, in whole years, that this will take. [3 marks]

Answer	years



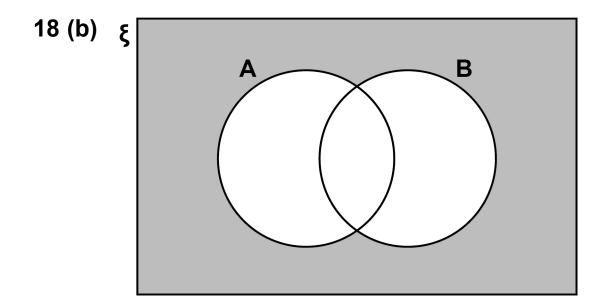
16 (a)	Factorise fully $9y^3 - 6y$ [2 marks]	
	Answer	
16 (b)	Factorise $3x^2 - 22x + 7$ [2 marks]	
	Answer	7

17 Work out the area of the parallelogram. [3 marks]


It is not drawn accurately.

[Turn over]

Answer



Which of these represents the shaded region?

Circle your answer. [1 mark]

 $\mathbf{A} \qquad \qquad \mathbf{B}' \qquad \qquad \mathbf{A} \, \mathbf{\Omega} \, \mathbf{B}' \qquad \qquad \mathbf{A} \, \mathbf{U} \, \mathbf{B}'$

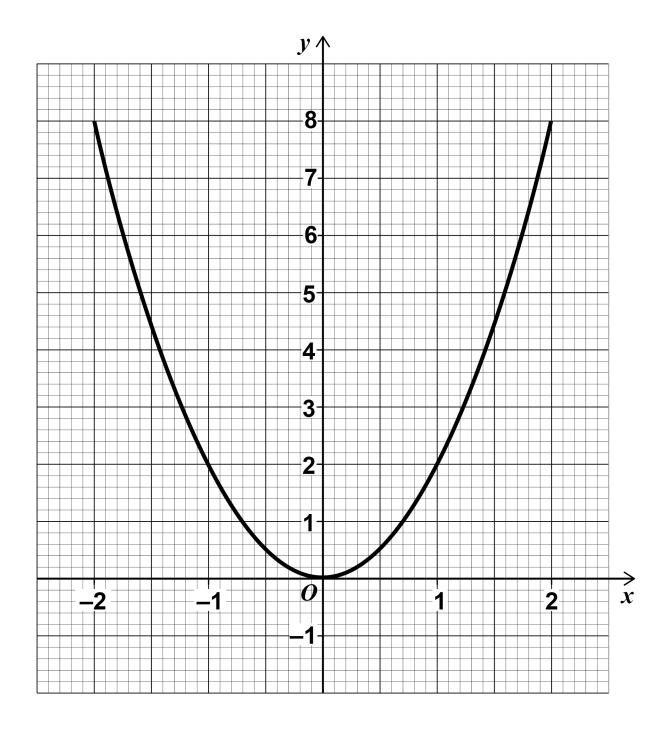
Which of these represents the shaded region?

Circle your answer. [1 mark]

(A U B)' (A ∩ B)' A' ∩ B A' U B'

The leng	th of a rectangle is five times the widt
The area	of the rectangle is 1620 cm ²
It is not o	drawn accurately.
Work out	t the width of the rectangle. [3 marks

)	A stone is thrown upwards with a speed of v metres per second.
	The stone reaches a maximum height of \emph{h} metres.
	h is directly proportional to v^2
	When $v = 10$, $h = 5$
	Work out the maximum height reached when $v = 24$ [4 marks]
	Г


Answer

21 (a) Meera is using a GRAPHICAL method to solve $2x^2 - 3x = 0$

She draws the graph of $y = 2x^2$ and a straight line graph on the same grid.

Here is the graph of $y = 2x^2$

Complete her method to solve [2 marks]	$2x^2 - 3x = 0$
Answer	

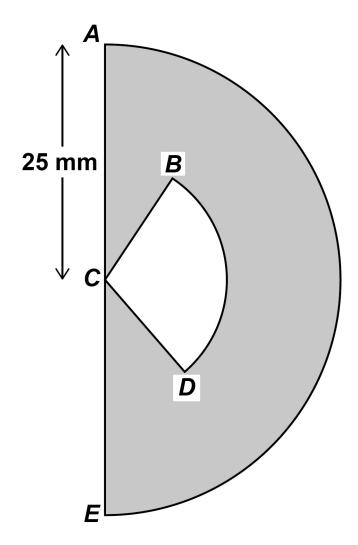
BLANK PAGE

21 (b)	Levi is solving	$2x^2 + 5x = 0$
--------	-----------------	-----------------

He uses this method.

$$2x^2 + 5x = 0$$
 subtract $5x$ from both sides
 $2x^2 = -5x$ divide both sides by x
 $2x = -5$ divide both sides by $2x = -2.5$

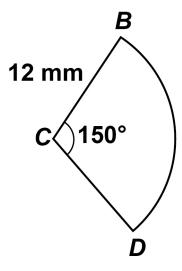
Evaluate	his me	thod an	d his ar	iswer.	[2 marks]	



The cross section of an earring is a semicircle, centre *C*, radius 25 mm

The earring is black and white.

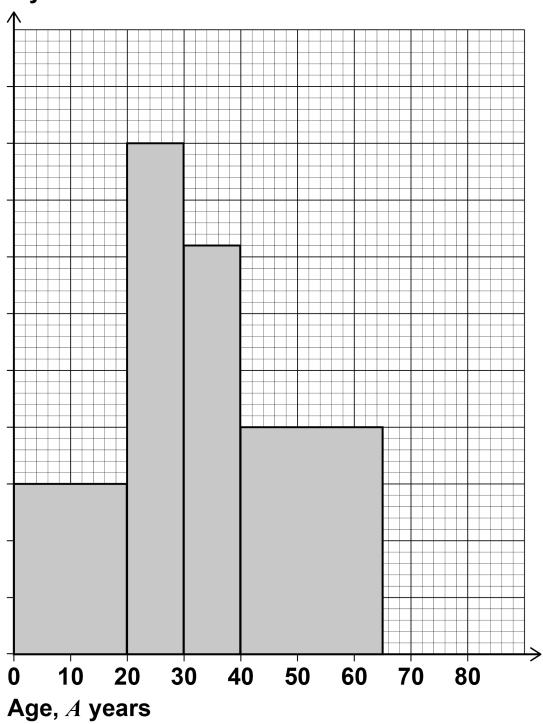
The shaded area is black.


It is not drawn accurately.

Sector BCD is white and has radius 12 mm

It is not drawn accurately.

Is more than 20% of the semicircle white?
You MUST show your working. [5 marks]


Answer		 5
	_	

23 Here is some information about a tennis club.

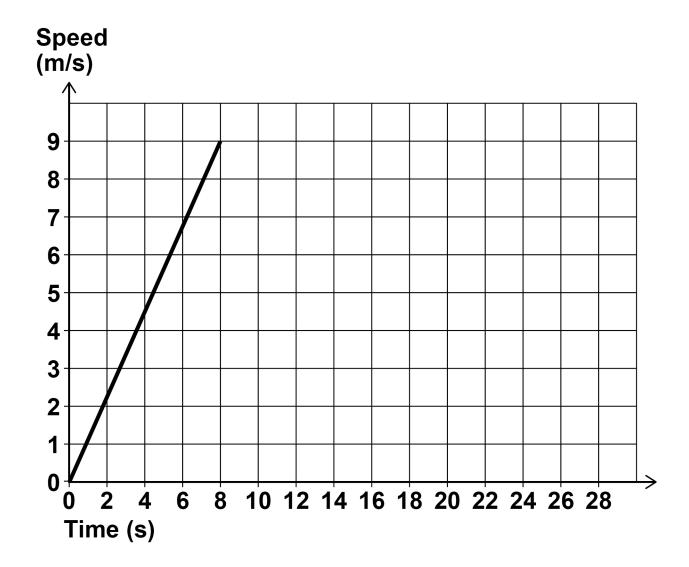
Members of a tennis club

Frequency density

	There are 30 members with $A < 20$
	There are 12 members with $65 \le A \le 80$
	There are no members with $A \geqslant 80$
23 (a)	Complete the histogram. [3 marks]

BLANK PAGE

)	Work out the total number of members of the club. [2 marks]
	Answer

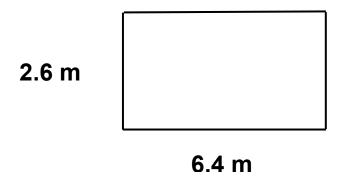


24 Beth ran a 200 metre race.

Here is a graph of the first 8 seconds of her race.

She completed the race at a constant speed of 9 m/s

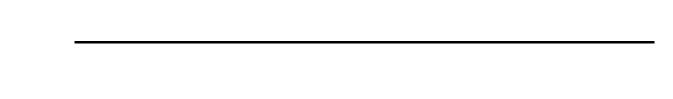
Speed-time graph for Beth



Amy completed the race in 27 seconds.		
Did Beth finish before Amy?		
You MUST show your working. [3 marks]		
Answer		

25	The dimensions of a rectangular floor are to the	1e
	nearest 0.1 metres.	

It is not drawn accurately.

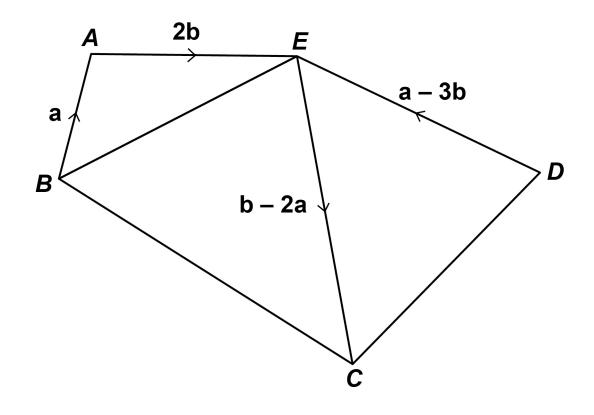


A force of 345 Newtons is applied to the floor.

The force is to the nearest 5 Newtons.

pressure =
$$\frac{\text{force}}{\text{area}}$$

Work out the upper bound of the pressure. Give your answer to 4 significant figures. You MUST show your working. [5 marks]



Answer	N/m ²	8

ABCDE is a pentagon.

It is not drawn accurately.

SHOW	tilat bC	DL IS a	paranei	ograiii.	Lo mark	၁ ၂

Give your solu	itions to 2 de	ecimal places.
-		-
ou MUST sho	ow your work	king. [6 marks]

Answer	9

END OF QUESTIONS

There are no questions printed on this page

For Examiner's Use		
Pages	Mark	
4-5		
6-9		
11-13		
14-15		
16-17		
18-21		
22-24		
25-27		
28-29		
30-33		
34-37		
38-41		
42-45		
46-49		
TOTAL		

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

IB/M/Nov17/CD/8300/2H/E5

