AQAE

Surname \qquad
Other Names \qquad
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.

GCSE
 PHYSICS

Foundation Tier Paper 1

8463/1F

Wednesday 20 May 2020 Afternoon
Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

BLANK PAGE

Answer ALL questions in the spaces provided.

| 0 | 1 |
| :--- | :--- | FIGURE 1 shows how the National Grid connects power stations to consumers.

FIGURE 1

| 0 | 1. | 1 |
| :--- | :--- | :--- | Name the parts of the National Grid labelled K, L and M . [3 marks]

$K=$ \qquad
$L=$ \qquad
$\mathbf{M}=$ \qquad
[Turn over]

FIGURE 2 shows how the percentage of electricity generated by gas-fired power stations changed in the UK over 5 years.

FIGURE 2

Percentage of electricity generated by gas-fired
power stations

| 0 | 1.2 | Calculate how many times greater the |
| :--- | :--- | :--- | percentage of electricity generated by gas-fired power stations was in 2018 than in 2014. [2 marks]

\qquad
\qquad
\qquad
\qquad
Number of times greater =
[Turn over]

\section*{| 0 | 1 | 3 |
| :--- | :--- | :--- | generating electricity using a gas-fired power station. [2 marks]}

\section*{| 0 | 1. | 4 |
| :--- | :--- | :--- |
| The UK government wants more electricity | | | to be generated using renewable energy resources.}

What is a renewable energy resource? [1 mark]

Tick (\checkmark) ONE box.

An energy resource that can be burned

An energy resource that can be recycled

An energy resource that can be replenished quickly

An energy resource that can be reused
[Turn over]

01 . 5 An offshore wind farm is a group of wind turbines that are placed out at sea.

FIGURE 3 shows the power output of an offshore wind farm compared with a wind farm on land for a 24 -hour period.

FIGURE 3
Power in MW

KEY

- Offshore wind farm
--- Wind farm on land

Give TWO advantages of the offshore wind farm compared with the wind farm on land.

Use information from FIGURE 3. [2 marks]
1 \qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad
[Turn over]

| 0 | 2 |
| :--- | :--- | FIGURE 4 shows a theme park ride called AquaShute.

FIGURE 4

| 0 | 2 | 1 |
| :--- | :--- | :--- | move down a slide.

There is a layer of water between the sled and the slide.

How does the layer of water affect the friction between the sled and the slide? [1 mark]

Tick (\checkmark) ONE box.

The friction is decreased.

The friction is increased.

The friction is not affected.
[Turn over]

| 0 | 2. | 2 |
| :--- | :--- | :--- | The mass of one rider is 62.5 kg .

The height of the slide is 16.0 m . gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the gravitational potential energy of the rider at the top of the slide.

Use the equation:
gravitational potential energy $=$ mass \times gravitational field strength \times height [2 marks]

Gravitational potential energy =
\qquad

| 0 | 2 | .3 |
| :--- | :--- | :--- | At the bottom of the slide the speed of the rider is $12 \mathrm{~m} / \mathrm{s}$.

The mass of the rider is $\mathbf{6 2 . 5} \mathbf{~ k g}$.
Calculate the kinetic energy of the rider at the bottom of the slide.

Use the equation:
kinetic energy $=0.5 \times$ mass $\times(\text { speed })^{2}$
[2 marks]
\qquad
\qquad
\qquad
\qquad

Kinetic energy = \qquad
[Turn over]

| 0 | 2. | 4 |
| :--- | :--- | :--- | When a rider reaches the bottom of the slide, the sled decelerates and stops.

Give TWO factors that will affect how far the sled will move before it stops. [2 marks]

1 \qquad
\qquad
\qquad
2 \qquad

| 0 | 3 |
| :--- | :--- | :--- | FIGURE 5 shows part of a lighting circuit in a house.

FIGURE 5

Live wire

0	3	1
1		

Tick (\checkmark) ONE box.

60 Hz

100 Hz
[Turn over]

0 03. 2 The mains electricity supply has an alternating potential difference.

Which diagram, below and on the opposite page, shows an alternating potential difference? [1 mark]

Tick (\checkmark) ONE box.

| 0 | 3. | 3 |
| :--- | :--- | :--- | is 230 V .

The current in the lamp is 0.020 A .
Calculate the power output of the lamp.
Use the equation:
power $=$ potential difference \times current [2 marks]
\qquad
\qquad
Power =
W
[Turn over]

| 0 | 3 | 4 |
| :--- | :--- | :--- | The potential difference across the lamp is 230 V .

Calculate the energy transferred by the lamp when 180 C of charge flows through the lamp.

Use the equation:
energy transferred $=$ charge flow \times potential difference [2 marks]

Energy transferred = J

REPEAT OF FIGURE 5

Live wire

| 0 | 3 | .5 |
| :--- | :--- | :--- | An electrician needs to replace the light switch in FIGURE 5.

Describe the possible hazard and the risk to the electrician of changing the light switch.
[2 marks]
Hazard \qquad

Risk \qquad
[Turn over]

| 0 | 4 | A student investigated how the total |
| :--- | :--- | :--- | resistance of identical resistors connected in series varied with the number of resistors.

The student used an ohmmeter to measure the total resistance of the resistors.

FIGURE 6 shows the student's circuit with 3 resistors.

FIGURE 6

The student repeated each reading of resistance three times.

TABLE 1 shows the student's results for 3 resistors in series.

TABLE 1

Number of resistors	Total resistance in Ω			
	Reading 1	Reading 2	Reading 3	Mean
3	35.9	36.0	36.1	36.0

| 0 | 4 | 1 |
| :--- | :--- | :--- | Calculate the mean resistance of 1 resistor. [2 marks]

Resistance $=$ \qquad Ω

| 0 | 4 | .2 |
| :--- | :--- | :--- | What was the resolution of the ohmmeter the student used? [1 mark]

Tick (\checkmark) ONE box.

0.1Ω

0.2Ω

1.1Ω

36.0Ω
[Turn over]

BLANK PAGE

| 0 | 4. | 3 How do the results show that the student's |
| :--- | :--- | :--- | measurements were precise? [1 mark]

Tick (\checkmark) ONE box.

The measurements are accurate.

The measurements are grouped closely together.

The measurements are reproducible.
[Turn over]

FIGURE 7 shows the results.
FIGURE 7

Mean total resistance in ohms

0	4	4
4		

Tick (\checkmark) ONE box.

The results give a line with a positive gradient.

The results give a straight line that would go through the origin.

The results show a linear relationship.

| 0 | 4 | .5 |
| :--- | :--- | :--- | 7 resistors.

Use FIGURE 7. [1 mark]
Mean total resistance of 7 resistors =
Ω
[Turn over]

| 0 | 4 | 6 |
| :--- | :--- | :--- | Some resistors are connected in series with a battery.

When more resistors are added in series, the total resistance increases.

Complete the sentences.
Choose answers from the list below.
Each answer may be used once, more than once or not at all. [2 marks]

- decreases
- increases
- remains the same

When the number of resistors increases, the potential difference across each resistor

When the number of resistors increases, the current in the circuit
\qquad -

| 0 | 5 | Radioactive waste from nuclear power |
| :--- | :--- | :--- | stations is a man-made source of background radiation.

| 0 | 5 | 1 |
| :--- | :--- | :--- | Which of the following is also a man-made source of background radiation? [1 mark]

Tick (\checkmark) ONE box.

cosmic rays

radiotherapy

rocks

stars

[Turn over]

| 0 | 5. | 2 |
| :--- | :--- | :--- | Nuclear power stations use the process of nuclear fission.

Complete the sentences to describe the process of nuclear fission.

Choose answers from the list below. [3 marks]

- a neutron
- a proton
- an electron
- cosmic rays
- energy
- gamma rays
- x-rays

An unstable nucleus absorbs
and splits into
two parts. Two or three neutrons are released, as well as \qquad
and \qquad -

| 0 | 5. | 3 |
| :--- | :--- | :--- | waste from nuclear power stations.

The following nuclear equation represents the decay of plutonium-239 (Pu-239).

$$
{ }_{94}^{239} \mathrm{Pu} \longrightarrow{ }_{92}^{235} \mathrm{U}+{ }_{2}^{4} \mathrm{He}
$$

How does the nuclear equation show that alpha radiation is emitted when plutonium-239 decays? [1 mark]

Tick (\checkmark) ONE box.

An alpha particle contains 92 protons.

An alpha particle has a mass number of 235.

An alpha particle is the same as a helium nucleus.
[Turn over]

FIGURE 8 shows how the activity of a sample of plutonium-239 varies with time.

FIGURE 8
Activity in becquerels

Time in years

0	5	4
4	How much time will it take for the activity of	

Time $=$
years

| 0 | 5. | 5 |
| :--- | :--- | :--- | [1 mark]

Half-life $=$ \qquad years

| 0 | 5 | 6 |
| :--- | :--- | :--- | station is buried underground.

People are warned to stay away from places where radioactive waste is buried.

Suggest ONE risk of going near the place where radioactive waste is buried. [1 mark]
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 6 | A student used the equipment in FIGURE 9 to |
| :--- | :--- | :--- | investigate how the pressure of a gas varies with the volume of the gas.

FIGURE 9

The syringe is filled with air.
TABLE 2 shows the results.
TABLE 2

Volume in cm^{3}	Pressure in kPa
24	100
20	120
12	200
10	240

$0 \cdot 6$. 1 Describe how the student could use the equipment in FIGURE 9 to obtain the data shown in TABLE 2. [4 marks]

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">6.2</td>
<td style="text-align: left; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Describe what happens to the pressure of the</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 6.2 | Describe what happens to the pressure of the |
| :--- | :--- | :--- |</table-markdown></div> air when the volume of the air is halved. [2 marks]

| 0 | 6. | 3 |
| :--- | :--- | :--- | The temperature of the air in the syringe remained constant during the student's investigation.

Which TWO properties of the air particles would change if the temperature increased?
[2 marks]
Tick (\checkmark) TWO boxes.

kinetic energy

mass

shape

speed
volume

0	7	A student heated water in an electric kettle.

| 0 | 7 | 1 |
| :--- | :--- | :--- | Water has a high specific heat capacity.

Complete the sentence.
Choose answers from the list below.
[2 marks]

- ${ }^{\circ} \mathrm{C}$
- J
- kg
- S
- W

The specific heat capacity of a substance is the energy needed to raise the temperature of 1 \qquad of the substance
by 1 \qquad .

| 0 | 7.2 | The kettle circuit contains a thermistor |
| :--- | :--- | :--- | :--- | which is used to switch the kettle off when the water reaches $100^{\circ} \mathrm{C}$.

What is the correct symbol for a thermistor?
[1 mark]
Tick (\checkmark) ONE box.

[Turn over]

| 0 | 7 | 3 |
| :--- | :--- | :--- | :--- | The resistance of the heating element in the kettle is 15Ω.

The current in the heating element is 12 A .
Calculate the power of the heating element.
Use the equation:
power $=(\text { current })^{2} \times$ resistance
[2 marks]
\qquad
\qquad
\qquad

Power =
W

BLANK PAGE

[Turn over]

The student investigated how quickly the kettle could increase the temperature of 0.50 kg of water.

FIGURE 10, on the opposite page, shows the results of the investigation.

| 0 | 7.4 |
| :--- | :--- | The temperature of the water did NOT start to increase until 10 seconds after the kettle was switched on.

What is the reason for this? [1 mark]
Tick (\checkmark) ONE box.

Energy is transferred from the surroundings to the kettle.

The charge flows slowly through the kettle circuit.

The heating element in the kettle takes time to heat up.

The power output of the kettle increases slowly.

FIGURE 10

Temperature
in ${ }^{\circ} \mathrm{C}$

[Turn over]

REPEAT OF FIGURE 10

Temperature in ${ }^{\circ} \mathrm{C}$

Time in seconds

| 0 | 7. | 5 |
| :--- | :--- | :--- | used to obtain the results shown in FIGURE 10. [6 marks]

[Turn over]

46

| 0 | 7.6 |
| :--- | :--- | :--- | The mass of water in the kettle was 0.50 kg .

The temperature of the water increased from $20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$
Calculate the energy transferred to the water. Use the Physics Equations Sheet. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Energy = J
[Turn over]

| 0 | 7 | .7 | The water in the kettle boiled for a short time |
| :--- | :--- | :--- | :--- | before the kettle switched off.

During this time 5.0 g of water changed to steam.
specific latent heat of vaporisation of water $=$ 2260000 J/kg

Calculate the energy transferred to change the water to steam.

Use the Physics Equations Sheet. [3 marks]
\qquad
\qquad
\qquad
\qquad

Energy =

BLANK PAGE

[Turn over]

| 0 | 8 | A student investigated how the current in a |
| :--- | :--- | :--- | filament lamp varied with the potential difference across the filament lamp.

FIGURE 11 shows part of the circuit used.
FIGURE 11

\section*{| 0 | 8 | 1 |
| :--- | :--- | :--- |
| 1 | Complete FIGURE 11 by adding an ammeter | |} and a voltmeter.

Use the correct circuit symbols. [3 marks]

[Turn over]

FIGURE 12, on the opposite page, shows some of the results.

| 0 | 8 | 2 |
| :--- | :--- | :--- | The student reversed the connections to the power supply and obtained negative values for the current and potential difference.

Draw a line on FIGURE 12 to show the relationship between the negative values of current and potential difference. [2 marks]

| 0 | 8. | 3 |
| :--- | :--- | :--- | Write down the equation which links current (I), potential difference (V) and resistance (R). [1 mark]

FIGURE 12

Current

in amps

REPEAT OF FIGURE 12

8

| 0 | 8.4 | Determine the resistance of the filament lamp when the potential |
| :--- | :--- | :--- | difference across it is 1.0 V .

Use data from FIGURE 12. [4 marks]
\qquad
\qquad
\qquad
\qquad
Resistance $=$ \qquad Ω

0	8	5
5		

What is meant by a zero error? [1 mark]
\qquad
[Turn over]

\section*{| 0 | 9 |
| :--- | :--- |
| FIGURE 13 shows an LED torch. | |}

FIGURE 13

0	9.1
1	

Which diagram shows the correct circuit for the torch? [1 mark]

Tick (\checkmark) ONE box.

0	9	$\begin{array}{l}\text { W }\end{array} \begin{array}{l}\text { Write down the equation which links charge } \\ \text { flow }(Q) \text {, current }(I) \text { and time }(t) \text {. [1 mark] }\end{array}$

[Turn over]

| 0 | 9 | 3 | The torch worked for 14400 seconds before |
| :--- | :--- | :--- | :--- | the cells needed replacing.

The current in the LED was 50 mA .
Calculate the total charge flow through the cells. [3 marks]
\qquad
\qquad
\qquad
\qquad

Total charge flow = C

0	9.4
When replaced, the cells were put into the	
torch the wrong way around.	

Explain why the torch did not work. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]
09.5 Write down the equation which links efficiency, total power input and useful power output. [1 mark]

| 0 | 9. | 6 |
| :--- | :--- | :--- | The efficiency of the LED was 0.75

Calculate the useful power output of the LED.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Useful power output =

[Turn over]

1	0
FIGURE 14 shows a hydroelectric power	

FIGURE 14

Electricity is generated when water from the reservoir flows through the turbines.

| 1 | 0. | 1 |
| :--- | :--- | :--- | Write down the equation which links density (ρ), mass (m) and volume (V). [1 mark]

| 1 | 0.2 |
| :--- | :--- | The reservoir stores $6500000 \mathrm{~m}^{3}$ of water. The density of the water is $998 \mathrm{~kg} / \mathrm{m}^{3}$.

Calculate the mass of water in the reservoir. Give your answer in standard form. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mass (in standard form) =

[Turn over]

| 1 | 0. | 3 |
| :--- | :--- | :--- | transferred (E), power (P) and time (t). [1 mark]

1	0.	4
The electrical generators can provide		

Calculate the maximum energy that can be transferred by the electrical generators.
[3 marks]
\qquad
\qquad
\qquad

Energy transferred =

BLANK PAGE

[Turn over]

| 1 | 0. | 5 | FIGURE 15 shows how the UK demand for |
| :--- | :--- | :--- | :--- | electricity increases and decreases during one day.

FIGURE 15

Demand for electricity
in $\times 10^{9} \mathrm{~W}$

The hydroelectric power station in FIGURE 14 can provide $1.5 \times 10^{9} \mathrm{~W}$ of power for a maximum of 5 hours.

Give TWO reasons why this hydroelectric power station is not able to meet the increase in demand shown between 04:00 and 16:00 in FIGURE 15. [2 marks]

1 \qquad
\qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

