Surname \qquad
Other Names \qquad
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.

GCSE
 PHYSICS

H
Higher Tier Paper 1
8463/1H

Wednesday 20 May 2020 Afternoon
Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

| 0 | 1 | A student investigated how the current in a |
| :--- | :--- | :--- | filament lamp varied with the potential difference across the filament lamp.

FIGURE 1 shows part of the circuit used.

FIGURE 1

| 0 | 1 | 1 |
| :--- | :--- | :--- | and a voltmeter.

Use the correct circuit symbols. [3 marks]
[Turn over]
FIGURE 2, on the opposite page, shows some of the results.

0 1	The student reversed the connections to the power supply and obtain negative values for the current and potential difference.
	Draw a line on FIGURE 2 to show the relationship between the negativ values of current and potential difference. [2 marks]
0 1	Write down the equation which links current (I), potential difference (and resistance (R). [1 mark]

Potential
difference
in volts

FIGURE 2
REPEAT OF FIGURE 2
Potential
dinference
in volits,
Determine the resistance of the filament lamp when the potential V difference across it is 1.0 V .
Use data from FIGURE 2 on

$\stackrel{-}{\circ}$
 $\stackrel{\square}{0}$

Use data from FIGURE 2 on page 8. [4 marks]
-

\section*{| 0 | 2 |
| :--- | :--- |
| FIGURE 3 shows an LED torch. | |}

FIGURE 3

| 0 | 2 | 1 |
| :--- | :--- | :--- | The torch contains one LED, one switch and three cells.

Which diagram shows the correct circuit for the torch? [1 mark]

Tick (\checkmark) ONE box.

| 0 | 2 | 2 |
| :--- | :--- | :--- | Write down the equation which links charge flow (Q), current (I) and time (t). [1 mark]

[Turn over]

| 0 | 2 | 3 |
| :--- | :--- | :--- | the cells needed replacing.

The current in the LED was 50 mA .
Calculate the total charge flow through the cells. [3 marks]
\qquad
\qquad
\qquad
\qquad

Total charge flow = C

| 0 | 2.4 | When replaced, the cells were put into the |
| :--- | :--- | :--- | torch the wrong way around.

Explain why the torch did not work. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

0	2	5
5		

| 0 | 2 |
| :--- | :--- | :--- | The total power input to the LED was 0.24 W . The efficiency of the LED was 0.75

Calculate the useful power output of the LED. [3 marks]
\qquad
\qquad
\qquad
\qquad

Useful power output =

| 0 | 3 |
| :--- | :--- | :--- | power station.

FIGURE 4

Electricity is generated when water from the reservoir flows through the turbines.

| 0 | 3 | 1 |
| :--- | :--- | :--- | (ρ), mass (m) and volume (V). [1 mark]

0	3.	2
The reservoir stores 6500		
000		
$\mathrm{~m}^{3}$	of water.	

Calculate the mass of water in the reservoir. Give your answer in standard form. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mass (in standard form) =

[Turn over]

| 0 | 3 | 3 |
| :--- | :--- | :--- | Write down the equation which links energy transferred (E), power (P) and time (t). [1 mark]

| 0 | 3 | .4 |
| :--- | :--- | :--- | The electrical generators can provide $1.5 \times 10^{9} \mathrm{~W}$ of power for a maximum of 5 hours.

Calculate the maximum energy that can be transferred by the electrical generators.
[3 marks]
\qquad
\qquad
\qquad
\qquad

Energy transferred =

BLANK PAGE

[Turn over]

03 . 5 FIGURE 5 shows how the UK demand for electricity increases and decreases during one day.

FIGURE 5

Demand for electricity in $\times 10^{9} \mathbf{W}$

The hydroelectric power station in FIGURE 4 can provide $1.5 \times 10^{9} \mathrm{~W}$ of power for a maximum of 5 hours.

Give TWO reasons why this hydroelectric power station is not able to meet the increase in demand shown between 04:00 and 16:00 in FIGURE 5. [2 marks]

1 \qquad
\qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad
[Turn over]

| 0 | 4 |
| :--- | :--- | much electricity was generated using coal-fired and gas-fired power stations in January for 5 years in the UK.

| 0 | 4 | .1 |
| :--- | :--- | :--- | Determine the percentage increase in electricity generated using gas-fired power stations from 2014 to 2018. [2 marks]

Percentage increase $=$ \%

FIGURE 6
Electricity generated in MJ

[Turn over]
0.4 . 2 Give TWO environmental advantages of using a gas-fired power station to generate electricity compared with using a coal-fired power station. [2 marks]

1
1
\qquad

2
\qquad

BLANK PAGE

[Turn over]

The mean surface temperature of the sea changes throughout the year.
A change in the mean surface temperature from year to year indicates
climate change.
FIGURE 7, on the opposite page, shows how the mean surface temperature
changed between 1988 and 2016 .
A student does not believe that climate change is occurring.
Explain how the data in FIGURE 7 suggests the student is wrong.
[2 marks]
m

FIGURE 7

$||||||||||||||\mid$ |Turn over]
0.4 . 4 A thermistor can be used to measure temperature.

FIGURE 8 shows how the resistance of four different thermistors A, B, C and D, varies with temperature.

FIGURE 8
Resistance
in $\mathbf{k} \Omega$

Temperature in ${ }^{\circ} \mathrm{C}$

Which of the four thermistors would be the most suitable to measure the surface temperature of the sea?

Tick (\checkmark) ONE box.
Explain your answer. [3 marks]

A

B

C

D

[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">5</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Radioactive waste from nuclear power</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 5 | Radioactive waste from nuclear power |
| :--- | :--- | :--- |</table-markdown></div> stations is a man-made source of background radiation.

0	5.	1 Give ONE other man-made source of
background radiation. [1 mark]		

\qquad

Nuclear power stations use the energy released by nuclear fission to generate electricity.

0	5.	2

0	5	3

Describe the process of nuclear fission inside a nuclear reactor. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

0	5	4
4		

Explain how the process of nuclear fusion leads to the release of energy. [2 marks]

0	5	5
5		

Explain the advantage of the radioactive waste having a shorter half-life. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 6 | FIGURE 9 shows a theme park ride called |
| :--- | :--- | :--- | AquaShute.

Riders of the AquaShute sit on a sled and move down a slide.

FIGURE 9

| 0 | 6.1 | A light gate and data logger can be used to |
| :--- | :--- | :--- | determine the speed of each rider and sled.

What two measurements are needed to determine the speed of a rider and sled? [2 marks]

Tick (\checkmark) TWO boxes.

Gravitational field strength

Length of sled

Mass of rider and sled

Temperature of surroundings

Time for sled to pass light gate
[Turn over]

| 0 | 6 | .2 |
| :--- | :--- | :--- | The decrease in gravitational potential energy of one rider on the slide was 8.33 kJ .

The rider moved through a vertical height of 17.0 m .
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the mass of the rider. [4 marks]

Mass of rider $=$ kg

| 0 | 6. | 3 |
| :--- | :--- | :--- | At the bottom of the slide, all riders and their sleds have approximately the same speed.

Explain why. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]
0.7 An electric kettle was switched on.

FIGURE 10 shows how the temperature of the water inside the kettle changed.

FIGURE 10

Temperature in ${ }^{\circ} \mathrm{C}$

Time after the kettle was switched on in seconds

| 0 | 7. | 1 |
| :--- | :--- | :--- | When the kettle was switched on the temperature of the water did NOT immediately start to increase.

Suggest ONE reason why. [1 mark]
[Turn over]

REPEAT OF FIGURE 10

Temperature in ${ }^{\circ} \mathrm{C}$

Time after the kettle was switched on in seconds

| 0 | 7. | 2 | The energy transferred to the water in |
| :--- | :--- | :--- | :--- | 100 seconds was 155000 J .

specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$
Determine the mass of water in the kettle.
Use FIGURE 10 on page 40.
Give your answer to 2 significant figures. [5 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mass of water ($\mathbf{2}$ significant figures) $=$

BLANK PAGE

| 0 | 7 | 3 |
| :--- | :--- | :--- | The straight section of the line in FIGURE 10 on page 40 can be used to calculate the useful power output of the kettle.

Explain how. [3 marks]
[Turn over]

| 0 | 8 | A student investigated how the total |
| :--- | :--- | :--- | resistance of identical resistors connected in parallel varied with the number of resistors.

The student used an ohmmeter to measure the total resistance of the resistors.

FIGURE 11 shows the student's circuit with 3 resistors.

FIGURE 11

The student repeated each reading of resistance three times.

TABLE 1, on the opposite page, shows some of the results for 3 resistors in parallel.

TABLE 1

Number of resistors	Total resistance in ohms			
	Reading 1	Reading 2	Reading 3	Mean
3	15.8	15.3	X	15.7

\section*{| 0 | 8.1 | Calculate value X in TABLE 1. [2 marks] |
| :--- | :--- | :--- |}

\qquad
\qquad
\qquad

$$
X=
$$

[Turn over]

BLANK PAGE

| 0 | 8. | 2 |
| :--- | :--- | :--- | The student thought that taking a fourth reading would improve the precision of the results.

The fourth reading was 16.2Ω.
Explain why the student was wrong.
[2 marks]
[Turn over]

FIGURE 12 shows the results from the investigation.
FIGURE 12
Mean total resistance in ohms

| 0 | 8 | .3 |
| :--- | :--- | :--- | The student concluded that the number of resistors in parallel was inversely proportional to the mean total resistance.

Explain why the student was correct.
Use data from FIGURE 12 in your answer. [3 marks]
[Turn over]

\section*{| 0 | 8. | 4 |
| :--- | :--- | :--- | decreases the total resistance. [2 marks]}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

BLANK PAGE

[Turn over]

| 0 | 9 | FIGURE 13 shows part of a mains electricity |
| :--- | :--- | :--- | lighting circuit in a house.

FIGURE 13

Live wire

| 0 | 9 | 1 |
| :--- | :--- | :--- | A fault in the switch caused a householder to receive a mild electric shock before a safety device switched the circuit off.

The mean power transfer to the person was 5.75 W .

The potential difference across the person was 230 V .

Calculate the resistance of the person. [5 marks]

[Turn over]

BLANK PAGE

0	9	2
An electrician replaced the switch.		

The electrician would have received an electric shock unless the circuit was disconnected from the mains supply.

Explain why. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 9 | 3 |
| :--- | :--- | :--- | The current from an electric shock causes a person's muscles to contract. The person cannot let go of the electrical circuit if the current is too high.

FIGURE 14, on the opposite page, shows how the maximum current at which a person can let go depends on the frequency of the electricity supply.

The UK mains frequency is 50 Hz .
Explain why it would be safer if the UK mains frequency was NOT 50 Hz . [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FIGURE 14

Maximum

current
at which
a person
can let go
in mA

[Turn over]

10 FIGURE 15 shows a balloon filled with helium gas.

FIGURE 15

| 1 | 0.1 |
| :--- | :--- | Which statements describe the movement of the gas particles in the balloon? [2 marks]

Tick (\checkmark) TWO boxes.

The particles all move in a predictable way.

The particles move at the same speed.

The particles move in circular paths.

The particles move in random directions.

The particles move with a range of speeds.

The particles vibrate about fixed positions.
[Turn over]

| 1 | 0 | .2 |
| :--- | :--- | :--- | The pressure of the helium in the balloon is 100000 Pa .

The volume of the balloon is $0.030 \mathrm{~m}^{3}$.
The balloon is compressed at a constant temperature causing the volume to decrease to $0.025 \mathrm{~m}^{3}$.

No helium leaves the balloon.
Calculate the new pressure in the balloon. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

New pressure = Pa
[Turn over]

| 1 | 0. | 3 |
| :--- | :--- | :--- | The temperature of the helium in the balloon was increased.

The mass and volume of helium in the balloon remained constant.

Explain why the pressure exerted by the helium inside the balloon would increase. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

