

GCSE Physics (8463)

Physics Equations Sheet

[Turn over]

1	pressure due to a column of liquid = height of column × density of liquid × gravitational field strength (g)	ρ = h ρ g
2	(final velocity) ² – (initial velocity) ² = 2 × acceleration × distance	$v^2 - u^2 = 2 a s$
3	force = change in momentum time taken	$F = \frac{m \Delta v}{\Delta t}$
4	elastic potential energy = 0.5 × spring constant × (extension) 2	$E_e = \frac{1}{2} k e^2$
5	change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m c \Delta \theta$

N

6	period = 1/frequency	$T=\frac{1}{f}$
7	$magnification = \frac{image\ height}{object\ height}$	
8	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F=BII
9	thermal energy for a change of state = mass × specific latent heat	E = m L

Equations 1, 3, 8, 10 and 11 are for Higher Tier only.

[Turn over]

10	potential difference across primary coil potential difference across secondary coil	$\frac{V_{p}}{V_{s}} = \frac{n_{p}}{n_{s}}$
	= number of turns in primary coil number of turns in secondary coil	
11	potential difference across primary coil × current in primary coil	$V_{\rho}I_{\rho} = V_{s}I_{s}$
	potential difference across secondary coilcurrent in secondary coil	
12	For gases: pressure × volume = constant	p V = constant

Equations 1, 3, 8, 10 and 11 are for Higher Tier only.

Insert for GCSE Physics (8463)/E3