AQA

Surname

Other Names
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.
GCSE
PHYSICS
Foundation Tier Paper 2 8463/2F

Friday 12 June 2020 Morning
Time allowed: 1 hour 45 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

2

For this paper you must have:

- a ruler
- a scientific calculator
- a protractor
- the Physics Equations Sheet (enclosed).

INSTRUCTIONS

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Answer ALL questions in the spaces provided.
- Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

INFORMATION

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

DO NOT TURN OVER UNTIL TOLD TO
 DO SO

Answer ALL questions in the spaces provided.

$0 \mid 1$

A student dropped a piece of modelling clay into oil.

FIGURE 1 shows the modelling clay just before it was dropped into the oil.

FIGURE 1

Modelling clay

Measuring cylinder

What was the distance fallen by the modelling clay? [1 mark]

Tick (\checkmark) ONE box.

from A to C

from A to D

from B to C
from B to D
[Turn over]

0 1. 2

What measuring instrument should be used to measure the distance fallen? [1 mark]

The student dropped four pieces of modelling clay, each with a different shape.

For each piece the student measured the time taken to fall the same distance through the oil.

0	1	3

The student removed each piece of modelling clay from the oil before dropping the next piece.

Suggest ONE reason why. [1 mark]

[Turn over]

The student repeated the measurements and calculated mean values.

TABLE 1 shows the results.
TABLE 1

Shape	Time taken in seconds			
	Drop 1	Drop 2	Drop 3	Mean
Sphere	47	38	41	42
\square	68	49	57	58
Cube Cylinder	34	37	34	x
\square	29	23	26	26

\section*{| 0 | 1.4 |
| :--- | :--- | :--- |}

Calculate value X in TABLE 1. [2 marks]
$X=$
[Turn over]

REPEAT OF TABLE 1

Shape	Time taken in seconds			
	Drop 1	Drop 2	Drop 3	Mean
Sphere	47	38	41	42
\square	68	49	57	58
Cube	34	37	34	x
Cylinder	34			
\square Cone	29	23	26	26

0	1.5

Each piece of modelling clay had the same mass.

Which shape in TABLE 1 had the smallest resistive force acting against it as it fell?

Tick (\checkmark) ONE box.
Give ONE reason for your answer. [2 marks]

Tick (\checkmark) ONE box.

\square Cube
\square Cylinder

Sphere
Reason
[Turn over]

\section*{| 0 | 1 | 6 |
| :--- | :--- | :--- |}

How would the time taken to fall change if the modelling clay was dropped through air instead of through oil? [1 mark]

Tick (\checkmark) ONE box.

Time through air would be less.

Time through air would be more.

Time through air would be the same.

0	1

The mass of a piece of modelling clay was 0.050 kg .
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the weight of the piece of modelling clay.

Use the equation:
weight $=$ mass \times gravitational field strength [2 marks]

Weight =
[Turn over]

\section*{| 0 | 1 | 8 |
| :--- | :--- | :--- |}

Weight causes the modelling clay to fall through the oil.

Weight is a non-contact force.
Which of the following are also non-contact forces? [2 marks]

Tick (\checkmark) TWO boxes.
Air resistance

Electrostatic force

Friction

Magnetic force

Tension

12

\section*{| 0 | 2 |
| :--- | :--- |}

Our solar system includes the Sun, planets and moons.

0	2	1

Complete the sentence.
Choose the answer from the list below. [1 mark]

- Andromeda
- Milky Way
- Pinwheel
- Whirlpool

Our solar system is part of the
galaxy.
[Turn over]

0 2. 2

Planets orbit the Sun.
What force causes planets to orbit the Sun? [1 mark]

TABLE 2 shows data about five planets.
TABLE 2

Planet	Mean distance from the Sun in millions of kilometres	Mean surface temperature in ${ }^{\circ} \mathrm{C}$
Earth	150	+22
Mars	228	-48
Jupiter	778	X
Saturn	1430	-178
Uranus	2870	-200

|||||||||||||

\section*{| 0 | 2 | 3 |
| :--- | :--- | :--- |}

How does the mean surface temperature of the planets in TABLE 2 change as the mean distance from the Sun increases? [1 mark]

0	2

Predict the mean surface temperature of Jupiter (X) in TABLE 2. [1 mark]

Mean surface temperature of Jupiter =
${ }^{\circ} \mathrm{C}$
[Turn over]

Five of the planets in the solar system are given in TABLE 2, on page 16.

How many other planets are there in the solar system? [1 mark]

Tick (\checkmark) ONE box.

Three

Four

Five

\section*{| 0 | 2 |
| :--- | :--- |}

Our Moon is a natural satellite.
Why is the Moon classified as a satellite? [1 mark]

Tick (\checkmark) ONE box.

It has no atmosphere.

It has no gravitational field.

It is too small to be a planet.

It orbits a planet.
[Turn over]

20

0	2.

How are planets and moons similar? [2 marks]

Tick (\checkmark) TWO boxes.

Their mass is about the same.

Their orbits are circular.

Their surfaces are the same colour.

They are similar in diameter.

They do not emit visible light.

21

0	2

The diameter of the Earth is 13000 km.
The diameter of the Sun is 110 times greater than the diameter of the Earth.

Calculate the diameter of the Sun. [2 marks]

Diameter of the Sun =

[Turn over]

22

$0 \mid 3$

FIGURE 2 shows some waves.

FIGURE 2

0]3. 1
Which arrow represents the wavelength of the waves? [1 mark]

Tick (\checkmark) ONE box.

P

Q

23

\section*{| 0 | 3 |
| :--- | :--- | . 2}

Which arrow represents the amplitude of the waves? [1 mark]

Tick (\checkmark) ONE box.

Q

R

[Turn over]

\section*{| 0 | 3 | 3 |
| :--- | :--- | :--- |}

The waves have a frequency of 0.20 hertz.
Calculate the period of the waves.
Use the equation:
period $=\frac{1}{\text { frequency }}$
[2 marks]
\qquad
\qquad

Period =

25

0	3	4

The frequency of the waves is increased. The speed of the waves stays the same.

What happens to the wavelength of the waves? [1 mark]

Tick (\checkmark) ONE box.

The wavelength decreases.

The wavelength increases.

The wavelength stays the same.
[Turn over]

A student investigated how the speed of water waves is affected by the depth of water in a tray.

FIGURE 3 shows some water in a rectangular tray.

FIGURE 3

The student lifted one end of the tray and then dropped it.

This made a wave which travelled the length of the tray.

27

$0 \mid 3.5$

The student measured the length of the tray.

What else should the student measure in order to calculate the speed of the wave? [1 mark]

Tick (\checkmark) ONE box.

Area of the bottom of the tray

Depth of water in the tray

Temperature of the water in the tray
\square Time taken by the wave to travel the length of the tray
[Turn over]

28

0	3

What was the independent variable in this investigation? [1 mark]

Tick (\checkmark) ONE box.

Depth of water

Length of tray

Speed of waves

29

BLANK PAGE

[Turn over]

FIGURE 4 shows the results.
FIGURE 4
Speed of
waves in
metres per second

0	3	7

Give ONE conclusion that can be made from FIGURE 4. [1 mark]

\section*{| 0 | 3 |
| :--- | :--- |}

What was the speed of a wave when the depth of water was 2.5 cm ? [1 mark] Speed of wave $=$ m / s
[Turn over]

32

BLANK PAGE

\section*{| 0 | 4 | 1 |
| :--- | :--- | :--- |}

Visible light is used for communications.
Which other parts of the electromagnetic spectrum are used for communications?
[2 marks]
Tick (\checkmark) TWO boxes.

Gamma rays

Microwaves

Radio waves

Ultraviolet
\square X-rays
[Turn over]

FIGURE 5 shows a ray of light in an optical fibre.

FIGURE 5

| 0 | 4 |
| :--- | :--- | :--- |

What is the name given to the dotted line on FIGURE 5? [1 mark]

\section*{| 0 | 4 |
| :--- | :--- |}

Where the ray of light touches the edge of the optical fibre it is reflected.

Draw the reflected ray on FIGURE 5. [2 marks]

0	4

Optical fibres need to be able to bend around corners without breaking.

Suggest the property that optical fibres must have to allow them to bend around corners. [1 mark]
[Turn over]

The appearance of visible light can change when it interacts with different objects.

Complete the sentences on the opposite page.

Choose the answers from the list below.
Each answer may be used once, more than once or not at all. [3 marks]

- absorbed
- reflected
- refracted
- transmitted

When white light is incident on a green filter, only green light passes through the filter. This is because green light is by the filter.
All other colours of light are by the filter.
When red light shines on a blue object the red light is
[Turn over]

\section*{| | 5 |
| :--- | :--- |}

A student placed a magnet on top of a plastic support in a bowl of water. This magnet was fixed in position and above the surface of the water.

The student put a second magnet into a piece of cork so that the magnet floated on the water. Only the north pole of the floating magnet was above the surface of the water.

FIGURE 6, on the opposite page, shows the arrangement of the magnets.

FIGURE 6

Floating magnet

Cork

Water

Plastic support

[Turn over]

40

BLANK PAGE

$0 \mid 5.1$

The floating magnet was placed near to the north pole of the fixed magnet. The floating magnet then moved along the path shown in FIGURE 6, on page 39.

Explain why. [2 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

42

0 5. 2

The student replaced the floating magnet with a piece of iron.

What happened to the piece of iron? [1 mark]

43

BLANK PAGE

[Turn over]
Describe how to use a compass to plot the magnetic field
pattern around a bar magnet.
Use FIGURE 7 to help you. [4 marks]
FIGURE 7
Compass

||||||||||||||||||||||||

45
[Turn over]
to ed 9 an electromagnetic lock diagram of 8 shows a FIGURE secure a door.
FIGURE 8

||||||||||||||

$0 \mid 5.4$
FIGURE 9
door unlo

correct sequence.
solenoid.
E letter in each box to show the
[2 marks]
A The iron bolt moves.
B A magnetic field is cr
C There is a current in the circuit.
$||||||||||||\mid$ [Turn over]
ـ

\section*{| $0 \mid 5$ |
| :--- |}

The electromagnetic lock contains a spring.
When the door is unlocked the extension of
is 0.040 m .
spring constant $=200 \mathrm{~N} / \mathrm{m}$

Calculate the elastic potential energy of the spring when the
door is unlocked.
Use the equation:
elastic potential energy $=0.5 \times$ spring constant $\times(\text { extension })^{2}$
$[2$ marks]
49

50

0	6	1			
FIGURE 10 shows the position of three types of wave in the					
electromagnetic spectrum.					
FIGURE 10					
Aicro- waves	B	Visible light	C	D	Gamma rays

Which letter represents the position of X-rays in the
electromagnetic spectrum? [1 mark]

\boldsymbol{m}
0
0
[Turn over]

A doctor needs to obtain an image of a bone in a patient's injured arm.

The doctor takes an X-ray of the arm.

0	6

Give ONE possible harmful consequence of receiving a dose of X-ray radiation. [1 mark]

TABLE 3 gives information about two methods of bone imaging.

TABLE 3

Method	Radiation dose in millisieverts
X-ray of arm	0.1
CT scan of arm	6.0

\section*{| 0 | 6 |
| :--- | :--- | :--- |}

Compare the risk of harm to the patient of having an X-ray rather than a CT scan. [2 marks]
[Turn over]

0	6	4

Which of the following is the same as 6.0 millisieverts? [1 mark]

Tick (\checkmark) ONE box.
0.60 sieverts
0.060 sieverts
0.0060 sieverts

REPEAT OF TABLE 3

Method	Radiation dose in millisieverts
X-ray of arm	0.1
CT scan of arm	6.0

|||||||||||||

55

\section*{| 0 | 6 | 5 |
| :--- | :--- | :--- |}

The patient received a total radiation dose of 2.5 millisieverts during one year.

Calculate the percentage of this dose that came from one X-ray of the arm.

Use the data in TABLE 3. [2 marks]
\qquad
\qquad
\qquad

Percentage =
\%
[Turn over]

56

07.1

An aircraft travels at a constant velocity.
How is the velocity of the aircraft different to the speed of the aircraft? [1 mark]

0 7. 2
FIGURE 11 shows one of the engines on the aircraft.

FIGURE 11
Front of engine

Air is taken into the front of the engine and pushed out of the back of the engine.

Explain the effect this has on the engine. [2 marks]
[Turn over]

58

0 7. 3

FIGURE 12, on the opposite page, shows a distance-time graph for the aircraft.

Determine the speed of the aircraft. [3 marks]

Speed =

m / s

FIGURE 12
Distance in metres

[Turn over]

\section*{| 0 | 7. |
| :--- | :--- |}

Write down the equation that links acceleration (a), change in velocity (Δv) and time taken (t). [1 mark]

\section*{| 0 | 7. | 5 |
| :--- | :--- | :--- |}

At a different stage of the flight, the aircraft was travelling at a velocity of $250 \mathrm{~m} / \mathrm{s}$.

The aircraft then decelerated at $0.14 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the time taken for the aircraft to decelerate from $250 \mathrm{~m} / \mathrm{s}$ to $68 \mathrm{~m} / \mathrm{s}$. [4 marks]
\qquad
\qquad

61

Time $=$ S

[Turn over]

62

\section*{| 0 | 7. | 6 |
| :--- | :--- | :--- |}

Write down the equation that links distance (s), force (F) and work done (W). [1 mark]

\section*{| 0 | 7. | 7 |
| :--- | :--- | :--- |}

When the aircraft landed, it travelled 2000 m before stopping.

The work done to stop the aircraft was 140000000 J.

Calculate the mean force used to stop the aircraft. [3 marks]
\qquad
\qquad

63

Mean force =

[Turn over]
64

65
$\stackrel{-}{+}$

0 8. The student attached the mass holder to the string.

The string rubbed along the edge of the bench as the mass
holder fell to the floor.
Suggest what the student could do to prevent the string
from rubbing. [1 mark]

67

68

The light gate and data logger were used to determine the acceleration of the trolley.

The student increased the resultant force on the trolley and recorded the acceleration of the trolley.

TABLE 4 shows the results.
TABLE 4

Resultant force in newtons	Acceleration in $\mathrm{m} / \mathrm{s}^{2}$
0.05	0.08
0.10	0.18
0.15	0.25
0.20	0.32
0.25	0.41

FIGURE 14 is an incomplete graph of the results.

FIGURE 14
Acceleration
in $\mathbf{m} / \mathbf{s}^{\mathbf{2}}$
0.50
0.40
0.30
0.20
0.10
0.00
:

Resultant force in Newtons
$|||||||||||\mid$ [Turn over]

BLANK PAGE

\section*{| 0 | 8 | 3 |
| :--- | :--- | :--- |}

Complete FIGURE 14, on page 69.

- Choose a suitable scale for the x-axis.
- Plot the results.
- Draw a line of best fit.
[4 marks]

0	8.

Describe the relationship between the resultant force on the trolley and the acceleration of the trolley. [1 mark]
[Turn over]

72

\section*{| 0 | 8 |
| :--- | :--- |}

Describe how the investigation could be improved to reduce the effect of random errors. [2 marks]
\qquad
\qquad
\qquad

0.8 . 6

Write down the equation that links acceleration (a), mass (m) and resultant force (F). [1 mark]
[Turn over]

74

0	8

The resultant force on the trolley was 0.375 N .

The mass of the trolley was 0.60 kg .
Calculate the acceleration of the trolley.
Give your answer to 2 significant figures. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

75

Acceleration (2 significant figures) =
$\mathrm{m} / \mathrm{s}^{2}$
[Turn over]
14

0	9

Complete the sentences. [2 marks]
The Sun is a stable star. This is because the forces pulling inwards caused by are in equilibrium
with the forces pushing outwards caused by the energy released by nuclear

0	9

Write down the equation that links distance travelled (s), speed (v) and time (t). [1 mark]

The mean distance between the Sun and the Earth is $1.5 \times 10^{11} \mathrm{~m}$.

Light travels at a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
Calculate the time taken for light from the Sun to reach the Earth. [3 marks]
\qquad
\qquad
\qquad
\qquad

Time = s
[Turn over]

78

$0 \mid 9.4$

Some stars are much more massive than the Sun.

Describe the life cycle of stars much more massive than the Sun, including the formation of new elements. [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

79

[Turn over]

\section*{| 0 | 9 | 5 |
| :--- | :--- | :--- |}

Stars emit radiation with a range of wavelengths.

Which property of a star does the range of wavelengths depend on? [1 mark]

Tick (\checkmark) ONE box.

Density

Mass

Temperature

Volume

END OF QUESTIONS

81

Additional page, if required. Write the question numbers in the left-hand margin.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

82

Additional page, if required. Write the question numbers in the left-hand margin.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

83

Additional page, if required. Write the question numbers in the left-hand margin.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

84

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/SB/Jun20/8463/2F/E2

