A

AQAE

Surname

Other Names

Centre Number

Candidate Number

Candidate Signature

A-level

BIOLOGY
Paper 1

7402/1

Thursday 6 June 2019
Morning
Time allowed: 2 hours

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 91.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

0	1	1
1		

\qquad

[Turn over]

Pectin is a substance found in some fruit and vegetables.

A scientist investigated the effect of pectin on the hydrolysis of lipids by a lipase enzyme.

His results are shown in FIGURE 1.

FIGURE 1
Lipase activity / arbitrary units

| 0 | 1. | 2 |
| :--- | :--- | :--- | non-competitive inhibitor of the lipase enzyme.

Use FIGURE 1 to explain why the scientist concluded that pectin is a NON-COMPETITIVE inhibitor. [1 mark]
[Turn over]

The scientist also found that pectin stops the action of bile salts. He prepared two suspensions:

- suspension A - lipid and bile salts
- suspension B - lipid, bile salts and pectin.

He did NOT add lipase to either suspension.
He observed samples from the suspensions using an optical microscope.

FIGURE 2, on the opposite page, shows what he saw in a typical sample from each suspension.

FIGURE 2

Suspension A

Magnification $\times 500$
Suspension B

[Turn over]

BLANK PAGE

0	1.	3
Calculate the maximum length of the large		

Using a ruler with millimetre intervals always includes an uncertainty in the measurement. Use the uncertainty in your measurement to determine the uncertainty of your calculated maximum length.

You can assume there is no uncertainty in the magnification. [2 marks]

Maximum length $=$
$\mu \mathrm{m}$
Uncertainty of your calculated maximum
length =
$\mu \mathrm{m}$
[Turn over]
011.4 No large lipid droplets are visible with the optical microscope in the samples from suspension A.

Explain why. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 2 | 1 |
| :--- | :--- | :--- | plants, algae, fungi and prokaryotes.

Complete TABLE 1 by putting a tick (\checkmark) where a cell wall component is present. [3 marks]

TABLE 1

Cell wall component	Plants	Algae	Fungi	Prokaryotes
Cellulose				
Murein				
Chitin				

[Turn over]

Cell walls make up much of the fibre that people eat.
Scientists investigated the relationship between the mass of fibre people ate each day and their risk of cardiovascular disease (CVD).

They gathered data from a large sample of people and used this to calculate a relative risk.

- A relative risk of 1 means there is no difference in risk between the sample and the whole population.
- A relative risk of < 1 means CVD is less likely to occur in the sample than in the whole population.
- A relative risk of > 1 means CVD is more likely to occur in the sample than in the whole population.

Their results are shown in FIGURE 3, on pages 16 and 17. A value of ± 2 standard deviations from the mean includes over 95% of the data.

BLANK PAGE

[Turn over]
FIGURE 3
Relative risk of
cardiovascular
disease
1.5
Mass of fibre consumed / g day ${ }^{-1}$

KEY

-	Mean relative risk
--- Line of best fit showing ± 2 standard deviations	
from the mean	
	Each '+' plotted point represents 1000 people

[Turn over]

BLANK PAGE

| 0 | 2.2 | A student concluded from FIGURE 3, on |
| :--- | :--- | :--- | pages 16 and 17, that eating an extra 10 g of fibre per day would significantly lower his risk of cardiovascular disease.

Evaluate his conclusion. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

[Turn over]

| 0 | 2 | 3 |
| :--- | :--- | :--- | fibre eaten per day using a food frequency questionnaire (FFQ).

The FFQ asks each person how often they have eaten many types of food over the past year.

An alternative method to calculate fibre eaten is for a nurse to ask each person detailed questions about what they have eaten in the last 24 hours.

Suggest ONE advantage of using the FFQ method and ONE disadvantage of using the FFQ method compared with the alternative method. [2 marks]

Advantage
\qquad
\qquad
\qquad
\qquad

Disadvantage

\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]
\square

| 0 | 3 | A group of students investigated biodiversity |
| :--- | :--- | :--- | of different areas of farmland.

They collected data in each of these habitats:

- the centre of a field
- the edge of a field
- a hedge between fields.

Their results are shown in FIGURE 4, on the opposite page.

\section*{| 0 | 3 | 1 |
| :--- | :--- | :--- |
| 1 | | | to calculate their index of diversity in each habitat?}

Do NOT include apparatus used for species sampling in your answer. [1 mark]
\qquad
\qquad
\qquad

FIGURE 4

[Turn over]

BLANK PAGE

0	3.	2
Give TWO ways the students would have		

1 \qquad
\qquad
\qquad
\qquad
\qquad
2
\qquad
\qquad
[Turn over]

| 0 | 3 | 3 |
| :--- | :--- | :--- | Modern farming techniques have led to larger fields and the removal of hedges between fields.

Use FIGURE 4, on page 25, to suggest why biodiversity decreases when farmers use larger fields. [1 mark]

| 0 | 3. | 4 |
| :--- | :--- | :--- | Farmers are now being encouraged to replant hedges on their land.

Suggest and explain ONE advantage and ONE disadvantage to a farmer of replanting hedges on her farmland. [2 marks]

Advantage
\qquad

Disadvantage

[Turn over]

FIGURE 5

Population
frequency

Mass at birth / g

KEY

- Mass at birth
-- - Transfer to special care unit

| 0 | 4 | Scientists collected data on 800000 human |
| :--- | :--- | :--- | births. The data showed the mass of each baby at birth and whether the baby needed to be transferred to a special care unit for very ill babies.

Their results are shown in FIGURE 5.

| 0 | 4 | 1 |
| :--- | :--- | :--- | birth is affected by stabilising selection. [3 marks]

[Turn over]

[Turn over]

| 0 | 4 | .2 |
| :--- | :--- | :--- | The scientists studied the effect of one form, KIR2DS1, of the human KIR gene on mass at birth.

In the following passage the numbered spaces can be filled with biological terms.

Write the correct biological term beside each number below, that matches the space in the passage. [3 marks]

(1) \qquad
(2) \qquad
(3) \qquad
(4) \qquad
(5) \qquad
(6) \qquad
[Turn over]

| 0 | 4 | 3 |
| :--- | :--- | :--- | The scientists studied 1500 more births. They recorded the mass at birth of each baby and the nature of the KIR gene in the mother's genome.

Some of their results are shown in TABLE 2.

TABLE 2

Presence or absence of KIR2DS1 in mother's genome	Number of babies with mass at birth:	
	between 2500 g and 4500 g	above 4500 g
Present	389	148
Absent	606	173

The scientists used a statistical test to test the following null hypothesis:
'The presence of KIR2DS1 in the mother's genome does NOT affect the frequency of births above 4500 g'

Tick (\checkmark) ONE box that gives the name of the statistical test that the scientists should use with the data in TABLE 2 to test this null hypothesis. [1 mark]

Chi-squared

Correlation coefficient

Student's t-test
[Turn over]

| 0 | 4 | 4 |
| :--- | :--- | :--- | The scientists calculated a P value of 0.03 when testing their null hypothesis.

What can you conclude from this result?
Explain your answer. [3 marks]
\qquad
[Turn over]
\square

0	5.	Describe the structure of the human
immunodeficiency virus (HIV). [4 marks]		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Turn over]

Some people infected with HIV do not develop AIDS. These people are called HIV controllers.

Scientists measured the number of HIV particles (the viral load) and the number of one type of T helper cell (CD4 cells) in the blood of a group of HIV controllers and also in a group of HIV positive patients who had symptoms of AIDS.
The median values and the range of their results are shown in TABLE 3.

TABLE 3

HIV status of people	Median viral load lvirus particles per cm^{3} of blood (range)	Median number of CD4 cells per mm
(range) blood		

\section*{| 0 | 5. | 2 |
| :--- | :--- | :--- |
| A test sample of $500 \mathrm{~mm}^{3}$ of blood is taken | | |} from an HIV controller to determine the viral load.

Tick (\checkmark) ONE box that shows the number of virus particles that would be present in a test sample of blood taken from an HIV controller with the median viral load. [1 mark]

106000

10600

1060

106
[Turn over]

| 0 | 5 | 3 |
| :--- | :--- | :--- | your knowledge of the immune response to suggest why HIV controllers do not develop symptoms of AIDS. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 6 | Scientists investigated the cell cycle in heart |
| :--- | :--- | :--- | cells taken from mice 6 days before their birth and then at 4, 14 and 21 days after their birth.

Their results are shown in TABLE 4.
Age 0 days $=$ day of birth.
TABLE 4

Age $/$ days	Percentage of heart cells undergoing mitosis	Percentage of heart cells undergoing DNA replication
-6	13.9	8.5
4	8.5	2.6
14	1.6	0.2
21	0.6	0.0

| 0 | 6 | 1 Describe and explain the data in TABLE 4. |
| :--- | :--- | :--- | [2 marks]

\qquad
[Turn over]

The scientists determined the percentage of heart cells undergoing DNA replication by using a chemical called BrdU. Cells use BrdU instead of nucleotides containing thymine during DNA replication.

| 0 | 6.2 | Describe how BrdU would be incorporated |
| :--- | :--- | :--- | into new DNA during semi-conservative replication. [5 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 6.3 | 3 |
| :--- | :--- | :--- | using an anti-BrdU antibody with an enzyme attached.

Use your knowledge of the ELISA test to suggest and explain how the scientists identified the cells that have BrdU in their DNA. [3 marks]
\qquad

| 0 | 7 | 'Ulva lactuca' is an alga that lives on rocks on |
| :--- | :--- | :--- | the seashore. It is regularly covered by seawater.

FIGURE 6 shows a diagram of one 'Ulva lactuca' alga.

FIGURE 6

Thallus - the green, leaf-like part of the alga

Holdfast - attaches the alga to the rock
'ULVA LACTUCA'

\section*{| 0 | 7 | 1 Unlike plants, 'Ulva lactuca' does not have |
| :--- | :--- | :--- | xylem tissue.}

Suggest how 'Ulva lactuca' is able to survive without xylem tissue. [1 mark]
\qquad
\qquad
\qquad
[Turn over]
'Ulva lactuca' has a haploid and a diploid form.
FIGURE 7 shows the life cycle of 'Ulva lactuca’.
FIGURE 7

0	7.	2
On FIGURE 7 complete each box with an		

0.7 . 3 'Ulva prolifera' also produces haploid, mobile single cells that can fuse to form a zygote.

Suggest and explain ONE reason why successful reproduction between 'Ulva prolifera' and 'Ulva lactuca' does NOT happen. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]
The water potential of leaf cells is affected by the water content of the
soil.
Scientists grew sunflower plants. They supplied different plants with
different volumes of water.
After two days, they determined the water potential in the leaf cells
using an instrument that gave a voltage reading.
The scientists generated a calibration curve to convert the voltage
readings to water potential.
FIGURE 8, on the opposite page, shows their calibration curve.
FIGURE 8

Water potential / MPa
[Turn over]

| 0 | 8 | .1 |
| :--- | :--- | :--- | The scientists needed solutions of known water potential to generate

their calibration curve.
TABLE 5 shows how to make a sodium chloride solution with a water
potential of -1.95 MPa
Complete TABLE 5 by giving all headings, units and volumes required
to make $20 \mathrm{~cm}^{3}$ of this sodium chloride solution. [2 marks]
TABLE 5

Water potential / MPa	Concentration of sodium chloride solution / mol dm		
	Volume of 1 mol dm so3 sodium chloride solution /		
-1.95	0.04	-	-

[Turn over]

TABLE 6 shows some of the concentrations of sodium chloride solution the scientists used and the water potential of each solution.

TABLE 6

Concentration of sodium chloride solution $/ \mathrm{mol} \mathrm{dm}^{-3}$	Water potential / MPa
0.04	-1.95
0.10	-4.87
0.12	-5.84

\section*{| 0 | 8 | 2 |
| :--- | :--- | :--- |
| . There is a linear relationship between the | | | water potential and the concentration of sodium chloride solution.}

Use the data in TABLE 6 to calculate the concentration of sodium chloride solution with a water potential of -3.41 MPa [2 marks]

Answer = \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
[Turn over]

In addition to determining the water potential in the leaf cells, the scientists measured the growth of the leaves.

They recorded leaf growth as a percentage increase of the original leaf area.

Their results are shown in FIGURE 9.
FIGURE 9

Percentage
increase of
original
leaf area

\section*{| 0 | 8. | 3 |
| :--- | :--- | :--- | One leaf with an original area of $60 \mathrm{~cm}^{2}$ gave} a voltage reading of $-7 \mu \mathrm{~V}$

Use FIGURE 8, on page 57, and FIGURE 9, opposite, to calculate by how much this leaf increased in area.
Give your answer in $\mathrm{cm}^{\mathbf{2}}$ [2 marks]

Answer =
cm ${ }^{2}$
[Turn over]

| 0 | 8 | .4 |
| :--- | :--- | :--- | Sunflowers are not xerophytic plants. The scientists repeated the experiment with xerophytic plants.

Suggest and explain ONE way the leaf growth of xerophytic plants would be different from the leaf growth of sunflowers in FIGURE 9, on page 62. [2 marks]
\qquad
\qquad
\qquad
\qquad
018.5 Use your knowledge of gas exchange in leaves to explain why plants grown in soil with very little water grow only slowly. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 9 | A scientist investigated the affinity for oxygen |
| :--- | :--- | :--- | of horse haemoglobin and mouse haemoglobin.

Some of their results are shown in TABLE 7.

TABLE 7

Animal	Partial pressure of oxygen when haemoglobin is 50% saturated / kPa	Partial pressure of oxygen when haemoglobin is 25\% saturated / kPa	Body mass of one animal / g
Horse	3.2	1.9	550000
Mouse	6.5	3.3	23

0	9	1
1		

Percentage
 saturation of oxyhaemoglobin

Partial pressure of oxygen / kPa
[Turn over]

BLANK PAGE

\section*{| 0 | 9.2 |
| :--- | :--- | estimate the metabolic rate of an animal.}

Metabolic rate $=63 \times \mathrm{BM}^{-0.27}$
BM = body mass in grams
Use this equation to calculate how many times faster the metabolic rate of a mouse is than the metabolic rate of a horse. [2 marks]

Answer = \qquad times faster
[Turn over]

| 0 | 9 | 3 |
| :--- | :--- | :--- | differences between the oxyhaemoglobin dissociation curve for a mouse and the oxyhaemoglobin dissociation curve for a horse.

Suggest how these differences allow the mouse to have a higher metabolic rate than the horse. [2 marks]
\qquad
[Turn over]

72

| 0 | 9.4 | Mammals such as a mouse and a horse are |
| :--- | :--- | :--- | able to maintain a constant body temperature.

Use your knowledge of surface area to volume ratio to explain the higher metabolic rate of a mouse compared to a horse. [3 marks]
\qquad

1.0. 1 Explain FIVE properties that make water important for organisms. [5 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Turn over]

$$
76
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$||||||||||||||||||||\mid$

| 1 | 0 | 2 |
| :--- | :--- | :--- | use to confirm the presence of lipid, non-reducing sugar and amylase in a sample. [5 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

[Turn over]

1	0.	3
Describe the chemical reactions involved in the		

Give TWO named examples of polymers and their associated monomers to illustrate your answer. [5 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Turn over]

END OF QUESTIONS

BLANK PAGE

84

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.
IB/M/MW/Jun19/7402/1/E4

