AQA

Surname

\qquad
Other Names

Centre Number

Candidate Number
Candidate Signature
I declare this is my own work.

A-level

BIOLOGY

Paper 3

7402/3

Monday 15 June 2020
Morning
Time allowed: 2 hours
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions in SECTION A.
- Answer ONE question from SECTION B.
- You must answer the questions in the spaces provided. Do not write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 78.

SECTION A

Answer ALL questions in this section.
You are advised to spend no more than 1 hour and 15 minutes on this section.

| 0 | 1 |
| :--- | :--- | Guppies are small fish. Female guppies are dull in colour. Male guppies can be bright or dull in colour.

Scientists investigated the effect of female brain size on choosing a mate. They used laboratory-bred female guppies with large brains and with small brains.

They set up a fish tank as shown in FIGURE 1.

FIGURE 1

They observed each female for 10 minutes and recorded which male they were attracted towards. They repeated this with 45 large-brained females and 45 small-brained females.

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 1 | 1 |
| :--- | :--- | :--- |</table-markdown></div> investigation. [3 marks]
 1

\qquad
\qquad
\qquad
2
\qquad
\qquad
\qquad
3
[Turn over]

Guppies with large brains are better at identifying predators.

The scientists found that ONLY female guppies with large brains were attracted to male guppies bright in colour.

0	1	2
2		

\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

1. 3 Describe how the behaviour of female guppies could result in sympatric speciation. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 2 | In northern India, there is a conflict of |
| :--- | :--- | :--- | interests between farmers of livestock (eg cows) and people trying to conserve ibex (a type of wild goat).

When livestock are given extra food, their populations can grow too large and compete with ibex.

0	2	1
1		

[Turn over]

Livestock will outcompete ibex if they:

- are in the same habitat
- eat a similar diet.

Scientists investigated this conflict of interests.
TABLE 1 summarises some of the scientists' findings.
TABLE 1

Type of livestock	Difference between livestock food and ibex food*	Difference between livestock habitat and ibex habitat*
Cow	1.0	1.5
Horse	0.5	0.0
Yak	0.0	2.0

* A score of 0.0 indicates that the food or habitat is the same.

BLANK PAGE

[Turn over]

| 0 | 2 | .2 |
| :--- | :--- | :--- | for conservation of the ibex and the need for farmers to keep livestock.

Using ALL the information on page 10, suggest and explain THREE actions that the farmers could take to achieve this balance. [3 marks]

1
\qquad
\qquad
\qquad
\qquad
\qquad
2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 3 |
| :--- | :--- | number of frogs of different species. The viruses are closely related and all belong to the Ranavirus group.

Previously, the viruses infected only one species of frog.

0	3	1
Suggest and explain how the viruses became		

\qquad
\qquad
\qquad
\qquad
\qquad

15

0	3	2
2		

1
\qquad
2
[Turn over]

| 0 | 3 | 3 Determining the genome of the viruses could |
| :--- | :--- | :--- | allow scientists to develop a vaccine.

Explain how. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	3	4
4		

You can assume that the B lymphocytes of a frog respond in the same way as B lymphocytes of a human.

Do NOT include details of the cellular response in your answer. [3 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 4 | TABLE 2 |
| :--- | :--- | :--- | shows information about two types of medicine.

TABLE 2

Name of medicine	Mass of medicine in one tablet $/$ mg	Maximum dose of medicine an adult is allowed	Mass of sodium in one tablet $/ \mathrm{g}$
Aspirin	300	0.6 g every 4 hours	0.15
Paracetamol	500	1.0 g every 6 hours	0.43

| 0 | 4 | 1 A journalist studied the data in TABLE 2. She |
| :--- | :--- | :--- | made the following suggestion.

'If an adult takes the maximum number of tablets allowed for EITHER of the medicines, then the person would have more than the RDA of sodium.'

The RDA (recommended daily allowance) of sodium for an adult human is 2.4 g per day.

Is the journalist's statement true for BOTH of the medicines in TABLE 2?

Use suitable calculations to support your answer.

Show your working. [2 marks]
[Turn over]

Doctors investigated the link between high sodium concentrations in medicines and hypertension (high blood pressure).

They analysed medical records of patients. 1292337 of these patients had taken medicines containing high sodium concentrations. Each of these patients was paired with a patient from a control group.

| 0 | 4 | .2 |
| :--- | :--- | :--- | Give TWO factors that should have been the same for each pair of patients and ONE factor that should have been different. [2 marks]

Same factor 1

Same factor 2

Different factor
\qquad

0	4.
3	Doctors found:

- 4.73% of the patients who had taken medicines containing high sodium concentrations suffered from hypertension
- there were 7.18 times fewer control patients with hypertension.

Calculate how many of the control patients had hypertension.

Show your working. [2 marks]

Answer \qquad patients
[Turn over]

| 0 | 4.4 | A high concentration of sodium in the blood |
| :--- | :--- | :--- | can affect blood volume and cause hypertension.

Use your knowledge of water potential to suggest how high sodium concentrations in the medicines taken could affect blood volume. [3 marks]
\qquad

23
[Turn over]

0	5.	1
In the UK in 2016, there were 525048 deaths.		

Throat cancer caused 5\% of all deaths from cancer.

Calculate the mean number of people who died of throat cancer per month in 2016.

Show your working. [2 marks]
\qquad people per month

BLANK PAGE

[Turn over]

Increased methylation of the promoter region of a tumour suppressor gene causes one type of human throat cancer.

In this type of throat cancer, cancer cells are able to pass on the increased methylation to daughter cells. The methylation is caused by an enzyme called DNMT.

Scientists have found that a chemical in green tea, called EGCG, is a competitive inhibitor of DNMT. EGCG enables daughter cells to produce messenger RNA (mRNA) from the tumour suppressor gene.

| 0 | 5 | 2 |
| :--- | :--- | :--- | Suggest how EGCG allows the production of mRNA in daughter cells. [3 marks]

\qquad
\qquad

[Turn over]

The scientists investigated the effect of different amounts of EGCG on the growth rate of the throat cancer cells grown 'in vitro'. Their results are shown in FIGURE 2.

FIGURE 2

The figure has been removed due to third-party copyright restrictions.

| 0 | 5 | .3 |
| :--- | :--- | :--- | A reporter who reviewed all of this work concluded that drinking green tea could be a cure for cancer.

Suggest THREE reasons why his conclusion might NOT be valid. [3 marks]

1
\qquad
\qquad
\qquad
2
\qquad
\qquad
\qquad
3
\qquad
[Turn over]
066. 1 Describe the advantage of the Bohr effect during intense exercise. [2 marks]
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

A cyclist completed a fitness test on an exercise bike. The intensity of the exercise was increased every 10 seconds. The test finished when he was unable to cycle any further. The partial pressure of oxygen (pO_{2}) and of carbon dioxide $\left(\mathrm{pCO}_{2}\right)$ in air breathed out was measured.

FIGURE 3 shows the results of the cyclist's fitness test.

FIGURE 3

Partial pressure of oxygen in air breathed out $/ \mathrm{kPa}$

Ventilatory threshold (VT) is a measure of the point when anaerobic respiration increases because aerobic respiration alone can no longer maintain muscle contraction.

0	6.	2
VT can be identified as the FIRST point when		

Use FIGURE 3 to determine the TIME after the exercise started when the cyclist reached VT.

Calculate the RATIO of pO_{2} to pCO_{2} in breathed-out air at this time.

Show your working. [2 marks]

Time when the cyclist reached VT =
\min
Ratio of pO_{2} to pCO_{2} at $\mathrm{VT}=$ \qquad :1

BLANK PAGE

| 0 | 6 | .3 |
| :--- | :--- | :--- | An increase in the intensity of exercise produces an increase in the volume of carbon dioxide produced.

However, FIGURE 3, on page 32, shows that the pCO_{2} in air breathed out did NOT show a large increase during the exercise.

Suggest ONE physiological change that would cause this result. Explain how the physiological change would allow for the removal of the increase in the volume of carbon dioxide produced. [2 marks]

Physiological change

Explanation

\qquad
\qquad
\qquad
\qquad
[Turn over]
When muscle fibres have very low concentrations of ATP, they may get ATP in the following ways.
following ways.

- Phosphocreatine donates phosphate to ADP in anaerobic conditions.
FIGURE 4, on the opposite page, shows how these chemicals work.
FIGURE 4

[Turn over]
At more than 80% of maximum muscle effort, ATP can only be made for a limited time.
Use FIGURE 4, on page 37, to suggest ONE reason why. [1 mark]

$+$

0
0

| 0 | 6.5 | GW1516 is a performance-enhancing drug. |
| :--- | :--- | :--- | GW1516 activates AMPK AND develops slow muscle fibres at rest.

Use FIGURE 4, on page 37, to justify why professional athletes are NOT allowed to take GW1516.

Do NOT include details of chemiosmotic theory in your answer. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

41

[Turn over]

42

EPO is another performance-enhancing drug. It can increase the haematocrit (the percentage of red blood cells in blood).

| 0 | 6.6 A heart attack is caused by a lack of glucose |
| :--- | :--- | :--- | and oxygen being delivered to cardiac muscle via the coronary arteries. The overuse of EPO can increase the risk of a heart attack.

Suggest how. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 6 | 7 The normal haematocrit for human males is |
| :--- | :--- | :--- | $47(\pm 5) \%$. For professional male cyclists, the maximum haematocrit allowed is 50%.

A student suggested that professional male cyclists should be allowed to use EPO until their haematocrit is 50%.

Give TWO reasons why this suggestion is NOT valid. [2 marks]

1
\qquad
\qquad
\qquad
2 \qquad
\qquad
\qquad
\qquad

BLANK PAGE

[Turn over]

SECTION B

Answer ONE question.
You are advised to spend no more than 45 minutes on this section.

0	7	Write an essay on ONE of the topics below.

EITHER
$0 \mid 7.1$ The functions of enzymes and their importance in organisms. [25 marks]

OR

| 0 | 7. | 2 |
| :--- | :--- | :--- | diversity in organisms. [25 marks]

\qquad
\qquad
\qquad
\qquad

[Turn over]

48
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad \longrightarrow
\qquad

49
[Turn over]

50

[Turn over]
52

53
[Turn over]

54

[Turn over]

56
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $工$
\qquad

57

[Turn over]

58
\qquad
\qquad
\qquad
\qquad L
\qquad \longrightarrow
\qquad
[Turn over]
60

[Turn over]

62
[Turn over]

64

65
[Turn over]

[Turn over]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $工$
\qquad

[Turn over]

END OF QUESTIONS

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

