A

AQA
Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
AS
CHEMISTRY
Paper 2 Organic and Physical Chemistry
7404/2
Thursday 23 May 2019 Morning
Time allowed: 1 hour 30 minutes
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

> For this paper you must have:
> - the Periodic Table/Data Sheet, provided as an insert (enclosed)
> - a ruler with millimetre measurements
> - a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

ADVICE

You are advised to spend about 65 minutes on SECTION A and 25 minutes on SECTION B.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION A

Answer ALL questions in this section.

\section*{| 0 | 1 |
| :--- | :--- |}

The structures of three organic compounds A, B and C are shown opposite.

These compounds can be distinguished by simple test-tube reactions.

Compound A

Compound B

Compound C

[Turn over]

Repeat of Compounds A, B and C

Compound A

Compound B

Compound C

7

For each pair of compounds in questions 01.1 and 01.2, give a reagent (or combination of reagents) that could be added separately to each compound to distinguish between them.

State what is observed in each case.

0	1.

Compounds A and B [3 marks]
Reagent

Observation with A

Observation with B
[Turn over]

Repeat of Compounds A, B and C

Compound A

Compound B

Compound C

9

011.2
 Compounds A and C [3 marks]

Reagent

Observation with A

Observation with C
[Turn over]
$0 \mid 2$
Bromoethane reacts with potassium cyanide to form compound D.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{KCN} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{KBr}$ Compound D

0	2	1

Outline the mechanism for this reaction. [2 marks]

\section*{| 0 | 2 |
| :--- | :--- |}

Give the IUPAC name of D. [1 mark]

[Turn over]

BLANK PAGE

0	2

Calculate the percentage atom economy for the formation of D in this reaction.

Give your answer to the appropriate number of significant figures. [2 marks]
\% atom economy

0	3

This question is about enthalpy changes.

0	3

A student determined the enthalpy of combustion of cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$.

The student

- placed a pure sample of cyclohexane in a spirit burner
- placed the spirit burner under a beaker containing 50.0 g of water and ignited the cyclohexane
- extinguished the flame after a few minutes.

The results for the experiment are shown in TABLE 1.

TABLE 1

Initial temperature of the water $/{ }^{\circ} \mathrm{C}$	19.1
Initial mass of spirit burner and cyclohexane / g	192.730
Final mass of spirit burner and cyclohexane / g	192.100

The student determined from this experiment that the enthalpy of combustion of cyclohexane is $\mathbf{- 1 2 1 6} \mathrm{kJ} \mathrm{mol}^{-1}$
[Turn over]

Use the data to calculate the final temperature of the water in this experiment.

The specific heat capacity of water $=$ $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$

The relative molecular mass (M_{r}) of cyclohexane $=84.0$
[4 marks]

Final temperature of the water ${ }^{\circ} \mathrm{C}$
[Turn over]

BLANK PAGE

0	3

A data book value for the enthalpy of combustion of cyclohexane is $\mathbf{- 3 9 2 0} \mathrm{kJ} \mathrm{mol}^{-1}$

The student concluded that the temperature rise recorded in the experiment was smaller than it should have been.

Suggest a practical reason for this.
[1 mark]

[Turn over]

20

0	3	.3

TABLE 2 gives some values of standard enthalpies of combustion ($\Delta \mathrm{c} \mathrm{H}^{\circ}$).

TABLE 2

Substance	$\mathrm{C}(\mathrm{s})$	$\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})$
Standard enthalpy of combustion, $\Delta \mathrm{cHo} / \mathrm{kJ} \mathrm{mol}^{-1}$	-394	-286	-3920

Use the data in TABLE 2 to calculate the enthalpy change for the reaction represented by this equation
$6 \mathrm{C}(\mathrm{s})+6 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})$
[3 marks]

21

Enthalpy change kJ mol ${ }^{-1}$

22
$0 \mid 4$

This question is about fossil fuels.

0	4	1

The petrol fraction from crude oil contains octane ($\mathrm{C}_{8} \mathrm{H}_{18}$).

Give an equation for the complete
combustion of octane. [1 mark]

23

0	4

The combustion of petrol in car engines produces the pollutant nitrogen monoxide.

Give an equation for a reaction that removes nitrogen monoxide in a catalytic converter. [1 mark]
[Turn over]

24

\section*{| 0 | 4 | 3 |
| :--- | :--- | :--- |}

Sulfur dioxide is produced in the combustion of fossil fuels. The total emissions of sulfur dioxide in the UK have fallen dramatically since 1970.

Sulfur dioxide is now removed from the flue gases in power stations by reaction with calcium oxide.
$\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3}$

In 1970, the total UK emissions of sulfur dioxide were 6.49 million tonnes (1 tonne $=1000 \mathrm{~kg}$).

Calculate the mass, in kilograms, of calcium oxide needed to react with this mass of sulfur dioxide.

Give your answer in standard form.
[2 marks]

25

Mass of calcium oxide

26

0	5

Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is an important alcohol with many uses.

\section*{| 0 | 5 | 1 |
| :--- | :--- | :--- |}

Draw a diagram on the opposite page to show how two methanol molecules interact with each other through hydrogen bonding in the liquid phase.

Include all partial charges and all lone pairs of electrons in your diagram.
[3 marks]

27
[Turn over]

28

BLANK PAGE

29

0.5 . 2

The bond angle around the oxygen atom in methanol is slightly smaller than the regular tetrahedral angle of 109.5°

Explain why this bond angle is smaller than 109.5° [1 mark]
[Turn over]

\section*{| 0 | 5 | 3 |
| :--- | :--- | :--- |}

Methanol is made by the reaction of carbon monoxide with hydrogen.

$\mathrm{CO}+2 \mathrm{H}_{2} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}$

$\Delta H=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The reaction uses a copper-based catalyst, a pressure of 10 MPa and a temperature of 550 K

These conditions are used to provide a balance between equilibrium yield, reaction rate and cost.

Describe how the use of a catalyst, and changes in pressure and temperature, each affect equilibrium yield, reaction rate and cost. [6 marks]

[Turn over]

32
\qquad

33

[Turn over]

34
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10

BLANK PAGE

[Turn over]

$0 \mid 6$
Propene reacts with concentrated sulfuric acid to form two isomers, E and F.

The structure of E is shown.
$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}$

$\mathbf{O}=\mathbf{S}=\mathbf{0}$
OH

0 . 6.1

Name and outline the mechanism for the formation of E in this reaction. [5 marks] Name of mechanism

37

Mechanism

| 0 | 6 |
| :--- | :--- | :--- |

Explain why more of isomer E than isomer F is formed in this reaction. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

40

0	7

Propanedioic acid contains two carboxylic acid groups. It is a solid organic acid that is soluble in water.

0	7.	1

Draw the skeletal formula of propanedioic acid. [1 mark]

41

\section*{| 0.7 |
| :--- | :--- |}

Describe how to prepare $250 \mathrm{~cm}^{3}$ of an aqueous standard solution of propanedioic acid containing an accurately measured mass of the acid. Include essential practical details in your answer. [6 marks]

[Turn over]

42
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

43

[Turn over]

\qquad

45

0	7

Calculate the mass, in mg, of propanedioic acid ($M_{r}=104.0$) needed to prepare $250 \mathrm{~cm}^{3}$ of a $0.00500 \mathrm{~mol} \mathrm{dm}^{-3}$ solution. [2 marks]

Mass of propanedioic acid

mg

0	8

Propanal can be prepared by the oxidation of propan-1-ol with acidified potassium dichromate(VI).

An ionic equation for this reaction is
$3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+8 \mathrm{H}^{+} \longrightarrow$
$3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

0	8

Calculate the minimum volume, in cm^{3}, of $0.40 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium dichromate(VI) solution needed to oxidise $6.0 \mathrm{~cm}^{3}$ of propan-1-ol to propanal.
M_{r} of propan-1-ol = $\mathbf{6 0 . 0}$
Density of propan-1-ol $=0.80 \mathrm{~g} \mathrm{~cm}^{-3}$ [3 marks]

[Turn over]

48

0	8	2

The reaction is done in a pear-shaped flask.

Complete the diagram, on the opposite page, to show the assembled apparatus needed to prepare propanal from propan-1-ol in this way.

Label the diagram. [3 marks]

49

[Turn over]

50

0	9

The compound
1,2-dichlorotetrafluoroethane is a CFC that was previously used in refrigerators as a coolant.

0.9 .1

Molecules of
1,2-dichlorotetrafluoroethane can break down in the upper atmosphere to form chlorine radicals.

Give an equation to show the breakdown of one molecule of
1,2-dichlorotetrafluoroethane to form one chlorine radical and one other species. [1 mark]
[Turn over]

52

BLANK PAGE

53

0	9

Give TWO equations to show how chlorine radicals catalyse the decomposition of ozone. [2 marks]
[Turn over]

\section*{| 0 | 9 |
| :--- | :--- |}

Butane can be used as a replacement for CFCs in refrigerators.

During its use, the butane is repeatedly converted from liquid to gas and then back to liquid. Liquid butane expands as it turns into a gas.

- On the opposite page, calculate the volume, in cm^{3}, of 38.8 g of butane gas at 272 K and 101 kPa (the gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
(Mr of butane $=58.0$)
- On page 56, calculate the volume, in cm^{3}, of 38.8 g of liquid butane. (density of liquid butane $=0.60 \mathrm{~g} \mathrm{~cm}^{-3}$)
- Use your answers to calculate the factor by which butane expands in volume when it changes from a liquid to a gas. Give your answer on page 57.

55

Volume of butane gas

[Turn over]

56

Volume of liquid butane

SECTION B

Answer ALL questions in this section.

Only ONE answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the
 answer you now wish to select as shown. working.
[Turn over]

60

10

A 'drink-driving' offence is committed if the blood alcohol level of a driver is over 80 mg of ethanol per $100 \mathrm{~cm}^{3}$ of blood.

What is the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of ethanol if there are 80 mg of ethanol ($M_{r}=46.0$) per $100 \mathrm{~cm}^{3}$ of blood?
[1 mark]

○ A $\mathbf{0 . 0 0 0 1 7}$

○ B $\mathbf{0 . 0 0 1 7}$
$\bigcirc \quad \mathbf{O} \quad 0.017$
O D 1.7

1 1 1

Which statement is correct for the distribution curve of molecular energies in a gas? [1 mark]
\bigcirc A The curve is symmetrical about the maximum.
\bigcirc B There are always some molecules with zero energy.
\bigcirc C The position of the maximum of the curve is not dependent on the temperature.
\bigcirc D The mean energy of the molecules is greater than the most probable energy of the molecules.
[Turn over]

12

When one mole of ammonia is heated to a given temperature, 50% of it dissociates and the following equilibrium is established.
$\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$
What is the total amount, in moles, of gas in this equilibrium mixture? [1 mark]

O A 1.5
○ B 2.0
\bigcirc

D 3.0

13

Which compound is NOT an isomer of the following compound? [1 mark]

O $\mathrm{A} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$

O B $\mathbf{C H}_{3} \mathbf{C H}=\mathbf{C H C H}_{\mathbf{2}} \mathbf{O H}$
O $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$
O $\mathrm{D} \quad \mathrm{CH}_{2}=\mathbf{C H C H}_{2} \mathbf{C H O}$
[Turn over]

64

1	4

How many isomers are there of $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$? [1 mark]
$\bigcirc \quad$ A 2

- в 3

0 c 4
O 5

15

Which equation represents a propagation step? [1 mark]

O $\mathrm{A} \cdot \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}$
OB $\cdot \mathrm{CH}_{3}+\cdot{ }^{-} \mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
$\bigcirc \mathrm{Cl}_{2} \rightarrow \mathrm{Cl} \cdot+\mathrm{Cl} \cdot$
$\bigcirc \mathrm{D} \mathrm{CH}_{3} \mathrm{Cl}+\mathbf{C l} \rightarrow \cdot \mathbf{C H}_{2} \mathbf{C l}+\mathbf{H C l}$
[Turn over]

66

1 | 6

Which compound can react with ammonia to produce propylamine?
[1 mark]

O $A \quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
O $\mathrm{B} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
O C $\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{B r}$
O D $\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{C H}_{3}$

67

17
Which statement is NOT correct about $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{Br}$? [1 mark]

O A It displays $E-Z$ isomerism.
O B It forms an addition polymer.
\bigcirc C It reacts with electrophiles.
O D It decolourises bromine water.
[Turn over]

68

1	8

Which compound can be oxidised to form $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3}$? [1 mark]

O A 2-methylpropan-1-ol
O B 2,2-dimethylpropanol
O C 2-methylbutan-2-ol
O D 3-methylbutan-2-ol

1.9

Which species can act as a nucleophile? [1 mark]

○ $\mathbf{A} \mathbf{N H}_{4}{ }^{\mathbf{+}}$

O $\mathrm{B} \mathbf{C H}_{3} \mathbf{O H}$

$\bigcirc \quad \mathbf{C} \mathbf{C H}_{\mathbf{4}}$
\bigcirc
D \mathbf{H}^{+}
[Turn over]

Which alcohol forms a mixture of alkenes when dehydrated? [1 mark]

O A propan-1-ol
O B propan-2-ol
O C pentan-1-ol
O D pentan-2-ol

2	1

Which compound has the highest boiling point? [1 mark]

O $\mathrm{A} \mathbf{C H}_{3} \mathrm{CH}_{2} \mathbf{C H}_{2} \mathrm{Br}$
O B $\mathbf{C H}_{3} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{2} \mathrm{~F}$
$\bigcirc \mathrm{C} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathbf{C H O}$
O D $\mathbf{C H}_{3} \mathbf{C H}_{\mathbf{2}} \mathbf{C O O H}$
[Turn over]

72

2	2

Which compound could NOT be produced by reacting
2-bromo-3-methylbutane with sodium hydroxide? [1 mark]

O A 2-methylbut-1-ene

O B 3-methylbut-1-ene
O C 2-methylbut-2-ene
O D 3-methylbutan-2-ol

73

BLANK PAGE

[Turn over]

The infrared spectrum of an organic compound is shown.
Transmittance
/ \%

Wavenumber / cm ${ }^{-1}$

Which compound produces this spectrum? [1 mark]

4

ethanoic acid

[Turn over]

2	4

The heat released when 1.00 g of ethanol ($M_{r}=46.0$) undergoes complete combustion is 29.8 kJ

What is the heat released by each molecule, in joules, when ethanol undergoes complete combustion?
(the Avogadro constant
$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$) [1 mark]
$\bigcirc A 2.28 \times 10^{-18} \mathrm{~J}$

○ $\quad 4.95 \times 10^{-20} \mathrm{~J}$
$\bigcirc C 2.28 \times 10^{-21} \mathrm{~J}$
\bigcirc D $4.95 \times 10^{-23} \mathrm{~J}$

END OF QUESTIONS

77

BLANK PAGE

78

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
Section B	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/JW/Jun19/7404/2/E3

